Minimind/eval_model.py

182 lines
7.7 KiB
Python
Raw Permalink Normal View History

2025-05-14 00:01:40 +08:00
import argparse
import random
import time
import numpy as np
import torch
import warnings
from transformers import AutoTokenizer, AutoModelForCausalLM
from model.model import MiniMindLM
from model.LMConfig import LMConfig
from model.model_lora import *
warnings.filterwarnings('ignore')
def init_model(args):
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
if args.load == 0:
moe_path = '_moe' if args.use_moe else ''
modes = {0: 'pretrain', 1: 'full_sft', 2: 'rlhf', 3: 'reason', 4: 'grpo'}
ckp = f'./{args.out_dir}/{modes[args.model_mode]}_{args.dim}{moe_path}.pth'
model = MiniMindLM(LMConfig(
dim=args.dim,
n_layers=args.n_layers,
max_seq_len=args.max_seq_len,
use_moe=args.use_moe
))
state_dict = torch.load(ckp, map_location=args.device)
model.load_state_dict({k: v for k, v in state_dict.items() if 'mask' not in k}, strict=True)
if args.lora_name != 'None':
apply_lora(model)
load_lora(model, f'./{args.out_dir}/lora/{args.lora_name}_{args.dim}.pth')
else:
transformers_model_path = './MiniMind2'
tokenizer = AutoTokenizer.from_pretrained(transformers_model_path)
model = AutoModelForCausalLM.from_pretrained(transformers_model_path, trust_remote_code=True)
print(f'MiniMind模型参数量: {sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.2f}M(illion)')
return model.eval().to(args.device), tokenizer
def get_prompt_datas(args):
if args.model_mode == 0:
# pretrain模型的接龙能力无法对话
prompt_datas = [
'马克思主义基本原理',
'人类大脑的主要功能',
'万有引力原理是',
'世界上最高的山峰是',
'二氧化碳在空气中',
'地球上最大的动物有',
'杭州市的美食有'
]
else:
if args.lora_name == 'None':
# 通用对话问题
prompt_datas = [
'请介绍一下自己。',
'你更擅长哪一个学科?',
'鲁迅的《狂人日记》是如何批判封建礼教的?',
'我咳嗽已经持续了两周,需要去医院检查吗?',
'详细的介绍光速的物理概念。',
'推荐一些杭州的特色美食吧。',
'请为我讲解“大语言模型”这个概念。',
'如何理解ChatGPT',
'Introduce the history of the United States, please.'
]
else:
# 特定领域问题
lora_prompt_datas = {
'lora_identity': [
"你是ChatGPT吧。",
"你叫什么名字?",
"你和openai是什么关系"
],
'lora_medical': [
'我最近经常感到头晕,可能是什么原因?',
'我咳嗽已经持续了两周,需要去医院检查吗?',
'服用抗生素时需要注意哪些事项?',
'体检报告中显示胆固醇偏高,我该怎么办?',
'孕妇在饮食上需要注意什么?',
'老年人如何预防骨质疏松?',
'我最近总是感到焦虑,应该怎么缓解?',
'如果有人突然晕倒,应该如何急救?'
],
}
prompt_datas = lora_prompt_datas[args.lora_name]
return prompt_datas
# 设置可复现的随机种子
def setup_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def main():
parser = argparse.ArgumentParser(description="Chat with MiniMind")
parser.add_argument('--lora_name', default='None', type=str)
parser.add_argument('--out_dir', default='out', type=str)
parser.add_argument('--temperature', default=0.85, type=float)
parser.add_argument('--top_p', default=0.85, type=float)
parser.add_argument('--device', default='cuda' if torch.cuda.is_available() else 'cpu', type=str)
# 此处max_seq_len最大允许输入长度并不意味模型具有对应的长文本的性能仅防止QA出现被截断的问题
# MiniMind2-moe (145M)(dim=640, n_layers=8, use_moe=True)
# MiniMind2-Small (26M)(dim=512, n_layers=8)
# MiniMind2 (104M)(dim=768, n_layers=16)
parser.add_argument('--dim', default=512, type=int)
parser.add_argument('--n_layers', default=8, type=int)
parser.add_argument('--max_seq_len', default=8192, type=int)
parser.add_argument('--use_moe', default=False, type=bool)
# 携带历史对话上下文条数
# history_cnt需要设为偶数即【用户问题, 模型回答】为1组设置为0时即当前query不携带历史上文
# 模型未经过外推微调时在更长的上下文的chat_template时难免出现性能的明显退化因此需要注意此处设置
parser.add_argument('--history_cnt', default=0, type=int)
parser.add_argument('--stream', default=True, type=bool)
parser.add_argument('--load', default=0, type=int, help="0: 原生torch权重1: transformers加载")
parser.add_argument('--model_mode', default=1, type=int,
help="0: 预训练模型1: SFT-Chat模型2: RLHF-Chat模型3: Reason模型4: RLAIF-Chat模型")
args = parser.parse_args()
model, tokenizer = init_model(args)
prompts = get_prompt_datas(args)
test_mode = int(input('[0] 自动测试\n[1] 手动输入\n'))
messages = []
for idx, prompt in enumerate(prompts if test_mode == 0 else iter(lambda: input('👶: '), '')):
setup_seed(random.randint(0, 2048))
# setup_seed(2025) # 如需固定每次输出则换成【固定】的随机种子
if test_mode == 0: print(f'👶: {prompt}')
messages = messages[-args.history_cnt:] if args.history_cnt else []
messages.append({"role": "user", "content": prompt})
new_prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)[-args.max_seq_len - 1:] if args.model_mode != 0 else (tokenizer.bos_token + prompt)
answer = new_prompt
with torch.no_grad():
x = torch.tensor(tokenizer(new_prompt)['input_ids'], device=args.device).unsqueeze(0)
outputs = model.generate(
x,
eos_token_id=tokenizer.eos_token_id,
max_new_tokens=args.max_seq_len,
temperature=args.temperature,
top_p=args.top_p,
stream=args.stream,
pad_token_id=tokenizer.pad_token_id
)
print('🤖️: ', end='')
try:
if not args.stream:
print(tokenizer.decode(outputs.squeeze()[x.shape[1]:].tolist(), skip_special_tokens=True), end='')
else:
history_idx = 0
for y in outputs:
answer = tokenizer.decode(y[0].tolist(), skip_special_tokens=True)
if (answer and answer[-1] == '<EFBFBD>') or not answer:
continue
print(answer[history_idx:], end='', flush=True)
history_idx = len(answer)
except StopIteration:
print("No answer")
print('\n')
messages.append({"role": "assistant", "content": answer})
if __name__ == "__main__":
main()