Minimind/train_pretrain.py

290 lines
14 KiB
Python
Raw Permalink Normal View History

2025-02-09 23:49:47 +08:00
import os
2025-04-24 15:58:39 +08:00
# 设置环境变量
os.environ["WANDB_MODE"] = "offline" # 或者使用 "dryrun"
2025-02-09 23:49:47 +08:00
import platform
import argparse
import time
import math
import warnings
import pandas as pd
import torch
import torch.distributed as dist
from torch import optim, nn
from torch.nn.parallel import DistributedDataParallel
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader, DistributedSampler
from contextlib import nullcontext
from typing import Optional
2025-02-09 23:49:47 +08:00
from transformers import AutoTokenizer
from model.model import MiniMindLM
from model.LMConfig import LMConfig
from model.dataset import PretrainDataset
warnings.filterwarnings('ignore')
def Logger(content):
2025-04-24 15:58:39 +08:00
# 如果没有使用ddp或者ddp的主设备那么就打印
2025-02-09 23:49:47 +08:00
if not ddp or dist.get_rank() == 0:
print(content)
def get_lr(current_step, total_steps, lr):
2025-04-24 15:58:39 +08:00
# 更新学习率
# \text{get\_lr}(c, t, l) = \frac{l}{10} + 0.5 \cdot l \cdot \left(1 + \cos\left(\frac{\pi \cdot c}{t}\right)\right)
2025-02-09 23:49:47 +08:00
return lr / 10 + 0.5 * lr * (1 + math.cos(math.pi * current_step / total_steps))
def train_epoch(epoch, wandb):
loss_fct = nn.CrossEntropyLoss(reduction='none')
2025-02-09 23:49:47 +08:00
start_time = time.time()
2025-05-12 12:11:29 +08:00
moe_path = '_moe' if lm_config.use_moe else ''
2025-02-09 23:49:47 +08:00
for step, (X, Y, loss_mask) in enumerate(train_loader):
try:
# 将数据加载到设备上
X = X.to(args.device)
Y = Y.to(args.device)
loss_mask = loss_mask.to(args.device)
# 更新学习率
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch, args.learning_rate)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
with ctx:
res = model(X)
loss = loss_fct(
res.logits.view(-1, res.logits.size(-1)),
Y.view(-1)
).view(Y.size())
loss = (loss * loss_mask).sum() / loss_mask.sum()
2025-05-12 12:11:29 +08:00
# 添加辅助损失,如果存在的话
try:
if hasattr(model, 'module'):
# DDP情况
aux_loss = sum(l.feed_forward.aux_loss for l in model.module.layers
if hasattr(l.feed_forward, 'aux_loss'))
else:
# 非DDP情况
aux_loss = sum(l.feed_forward.aux_loss for l in model.layers
if hasattr(l.feed_forward, 'aux_loss'))
loss += aux_loss
except Exception as e:
Logger(f"Warning: Could not add auxiliary loss: {e}")
# 如果出错,不添加辅助损失
loss = loss / args.accumulation_steps
# Print data types for debugging
if step == 0 and (not ddp or dist.get_rank() == 0): # Print only for the first step of the first epoch on the main process
Logger("---- Data Type Check ----")
Logger(f"X.dtype: {X.dtype}")
if hasattr(model, 'module'): # DDP case
Logger(f"Model parameter dtype: {next(model.module.parameters()).dtype}")
else: # Non-DDP case
Logger(f"Model parameter dtype: {next(model.parameters()).dtype}")
Logger(f"res.logits.dtype: {res.logits.dtype}")
Logger(f"loss.dtype: {loss.dtype}")
Logger("-------------------------")
scaler.scale(loss).backward()
if (step + 1) % args.accumulation_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
# 打印日志
if step % args.log_interval == 0:
spend_time = time.time() - start_time
Logger(
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.12f} epoch_Time:{}min:'.format(
epoch + 1,
args.epochs,
step,
iter_per_epoch,
loss.item() * args.accumulation_steps,
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
if (wandb is not None) and (not ddp or dist.get_rank() == 0):
wandb.log({"loss": loss.item() * args.accumulation_steps,
"lr": optimizer.param_groups[-1]['lr'],
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
# 保存模型
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
model.eval()
2025-05-12 12:11:29 +08:00
# moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}.pth'
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
state_dict = model.module.state_dict() #获取模型参数
else:
state_dict = model.state_dict() #获取模型参数
torch.save(state_dict, ckp) #只保存参数
model.train()
except Exception as e:
print(f"Error occurred: {str(e)}")
save_path = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}_nanERROR.pth'
if os.path.exists(save_path):
os.remove(save_path)
2025-02-09 23:49:47 +08:00
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
2025-05-12 12:11:29 +08:00
state_dict = model.module.state_dict()
2025-02-09 23:49:47 +08:00
else:
state_dict = model.state_dict()
torch.save(state_dict, save_path)
for name, param in model.named_parameters():
if param.grad is not None and torch.isnan(param.grad).any():
print(f"NaN gradient in parameter: {name}")
for name, param in model.named_parameters():
if param.grad is not None and torch.isnan(param.grad).any():
print(f"Parameter {name} values: {param.data}")
print(f"Parameter {name} gradients: {param.grad}")
raise ValueError("NaN gradient detected")
def init_model(lm_config, pretrained_embedding_path: Optional[str] = None):
2025-04-24 15:58:39 +08:00
# 加载tokenizer
2025-02-09 23:49:47 +08:00
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
2025-04-24 15:58:39 +08:00
# 加载模型
2025-02-09 23:49:47 +08:00
model = MiniMindLM(lm_config).to(args.device)
# Load pretrained token embeddings if path is provided
if pretrained_embedding_path and os.path.exists(pretrained_embedding_path):
Logger(f"Loading pretrained token embeddings from {pretrained_embedding_path}")
embedding_weights = torch.load(pretrained_embedding_path, map_location=args.device)
model.tok_embeddings.load_state_dict(embedding_weights)
Logger("Successfully loaded pretrained token embeddings.")
elif pretrained_embedding_path:
Logger(f"Warning: Pretrained embedding path {pretrained_embedding_path} provided but file does not exist. Initializing embeddings from scratch.")
2025-04-24 15:58:39 +08:00
# 打印模型参数
2025-02-09 23:49:47 +08:00
Logger(f'LLM总参数量{sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} 百万')
return model, tokenizer
def init_distributed_mode():
2025-04-24 15:58:39 +08:00
if not ddp: return #如果没有启用分布式数据并行(DDP),直接返回,不执行任何操作。
global ddp_local_rank, DEVICE #声明这两个变量为全局变量,以便在函数外部也能访问它们。
2025-02-09 23:49:47 +08:00
2025-04-24 15:58:39 +08:00
dist.init_process_group(backend="nccl") #初始化分布式进程组使用NCCL后端NVIDIA Collective Communications Library这是NVIDIA GPU之间通信的优化库。
ddp_rank = int(os.environ["RANK"]) #从环境变量获取当前进程的全局编号。
ddp_local_rank = int(os.environ["LOCAL_RANK"]) #从环境变量获取当前进程的本地编号。
ddp_world_size = int(os.environ["WORLD_SIZE"]) #从环境变量获取当前进程组中的进程总数。
DEVICE = f"cuda:{ddp_local_rank}" #根据本地编号选择GPU设备。
torch.cuda.set_device(DEVICE) #设置当前进程的GPU设备。
2025-02-09 23:49:47 +08:00
# torchrun --nproc_per_node 2 1-pretrain.py
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="MiniMind Pretraining")
parser.add_argument("--out_dir", type=str, default="out")
# 若要以最快速度实现zero则epochs设置为1轮否则应当利用有限的数据训练2~6个epochs。
2025-04-24 15:58:39 +08:00
parser.add_argument("--epochs", type=int, default=3)
2025-05-09 15:19:41 +08:00
parser.add_argument("--batch_size", type=int, default=32)
2025-02-09 23:49:47 +08:00
parser.add_argument("--learning_rate", type=float, default=5e-4)
2025-04-24 15:58:39 +08:00
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu") #如果GPU可用则使用GPU否则使用CPU。
2025-02-09 23:49:47 +08:00
parser.add_argument("--dtype", type=str, default="bfloat16")
2025-05-10 20:23:52 +08:00
parser.add_argument("--use_wandb", default=True, action="store_true")
2025-02-09 23:49:47 +08:00
parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain")
2025-04-24 15:58:39 +08:00
parser.add_argument("--num_workers", type=int, default=8)
2025-02-09 23:49:47 +08:00
parser.add_argument("--ddp", action="store_true")
2025-04-24 15:58:39 +08:00
parser.add_argument("--accumulation_steps", type=int, default=8) #梯度累积步数,用于控制梯度更新频率。
parser.add_argument("--grad_clip", type=float, default=1.0) #梯度裁剪阈值,用于防止梯度爆炸。
parser.add_argument("--warmup_iters", type=int, default=0) #预热迭代次数,用于控制学习率预热过程。
parser.add_argument("--log_interval", type=int, default=100) #日志打印间隔,用于控制日志打印的频率。
parser.add_argument("--save_interval", type=int, default=100) #模型保存间隔,用于控制模型保存的频率。
parser.add_argument('--local_rank', type=int, default=-1) #本地进程编号,用于分布式训练。
2025-05-09 15:19:41 +08:00
parser.add_argument('--dim', default=768, type=int) #模型维度,用于控制模型的大小。
parser.add_argument('--n_layers', default=8, type=int) #层数,用于控制模型层数。
2025-04-25 16:29:28 +08:00
parser.add_argument('--max_seq_len', default=512, type=int) #最大序列长度,用于控制输入序列的最大长度。
2025-04-24 15:58:39 +08:00
parser.add_argument('--use_moe', default=False, type=bool) #是否使用MOE用于控制是否使用MOE。
2025-05-09 15:19:41 +08:00
parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能使用固定值1e-4替代") #禁用数据库功能,启用特殊模式
2025-04-24 15:58:39 +08:00
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") #数据路径,用于控制数据集的路径。
parser.add_argument("--pretrained_embedding_path", type=str, default=None, help="Path to pretrained token embedding weights (.pth file)")
2025-02-09 23:49:47 +08:00
args = parser.parse_args()
2025-05-09 15:19:41 +08:00
lm_config = LMConfig(
dim=args.dim,
n_layers=args.n_layers,
max_seq_len=args.max_seq_len,
use_moe=args.use_moe,
disable_db=args.disable_db # 添加禁用数据库参数
) #创建LMConfig对象用于控制模型配置。
2025-04-24 15:58:39 +08:00
args.save_dir = os.path.join(args.out_dir) #创建保存目录。
os.makedirs(args.save_dir, exist_ok=True) #创建保存目录。
os.makedirs(args.out_dir, exist_ok=True) #创建输出目录。
tokens_per_iter = args.batch_size * lm_config.max_seq_len #计算每个迭代步骤的token数量。
print(f"tokens_per_iter: {tokens_per_iter}")
device_type = "cuda" if "cuda" in args.device else "cpu" #确定设备类型。
2025-02-09 23:49:47 +08:00
# Determine the torch dtype
pt_dtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[args.dtype]
2025-02-09 23:49:47 +08:00
args.wandb_run_name = f"MiniMind-Pretrain-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast(dtype=pt_dtype)
2025-02-09 23:49:47 +08:00
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
ddp_local_rank, DEVICE = 0, "cuda:0"
2025-04-04 11:39:41 +08:00
base_seed = 1337
torch.manual_seed(base_seed)
torch.cuda.manual_seed(base_seed)
2025-02-09 23:49:47 +08:00
if ddp:
init_distributed_mode()
args.device = torch.device(DEVICE)
2025-04-04 11:39:41 +08:00
rank = dist.get_rank()
torch.manual_seed(base_seed + rank)
# 同时设置 CUDA 的随机种子
torch.cuda.manual_seed(base_seed + rank)
2025-02-09 23:49:47 +08:00
if args.use_wandb and (not ddp or ddp_local_rank == 0):
import wandb
2025-05-10 20:23:52 +08:00
# Merge args and lm_config parameters for wandb config
config = vars(args).copy()
config.update(lm_config.__dict__)
wandb.init(project=args.wandb_project, name=args.wandb_run_name, config=config)
2025-02-09 23:49:47 +08:00
else:
wandb = None
model, tokenizer = init_model(lm_config, args.pretrained_embedding_path)
2025-02-09 23:49:47 +08:00
train_ds = PretrainDataset(args.data_path, tokenizer, max_length=lm_config.max_seq_len)
train_sampler = DistributedSampler(train_ds) if ddp else None
train_loader = DataLoader(
train_ds,
batch_size=args.batch_size,
pin_memory=True,
drop_last=False,
shuffle=False,
num_workers=args.num_workers,
sampler=train_sampler
)
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16']))
2025-02-09 23:49:47 +08:00
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)
if ddp:
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
torch.autograd.set_detect_anomaly(True)
2025-02-09 23:49:47 +08:00
iter_per_epoch = len(train_loader)
for epoch in range(args.epochs):
train_epoch(epoch, wandb)