130 lines
5.3 KiB
Python
130 lines
5.3 KiB
Python
![]() |
import json
|
|||
|
import random
|
|||
|
import re
|
|||
|
|
|||
|
import pandas as pd
|
|||
|
import numpy as np
|
|||
|
from torch.utils.data import Dataset, DataLoader
|
|||
|
import torch
|
|||
|
from sklearn.model_selection import train_test_split
|
|||
|
import os
|
|||
|
|
|||
|
os.environ["TOKENIZERS_PARALLELISM"] = "false" # 禁用 tokenizer 的并行处理
|
|||
|
|
|||
|
# 定义 PretrainDataset 类,继承自 Dataset
|
|||
|
class PretrainDataset(Dataset):
|
|||
|
def __init__(self, data_path_lst, max_length=512, memmap=False):
|
|||
|
super().__init__()
|
|||
|
# 如果使用内存映射(memmap)
|
|||
|
if memmap:
|
|||
|
with open(data_path_lst[0], 'r') as f:
|
|||
|
nbytes = f.seek(0, 2) # 获取文件总字节数
|
|||
|
flen = f.tell() // np.dtype('uint16').itemsize # 计算文件长度
|
|||
|
self.data = np.memmap(data_path_lst[0], dtype=np.dtype('uint16'), shape=(flen // max_length, max_length)) # 使用内存映射加载数据
|
|||
|
else:
|
|||
|
data_lst = []
|
|||
|
for data_path in data_path_lst:
|
|||
|
with open(data_path, 'rb') as f:
|
|||
|
data = np.fromfile(f, dtype=np.uint16) # 从文件中读取数据
|
|||
|
data_lst.append(data)
|
|||
|
data = np.concatenate(data_lst) # 合并所有数据
|
|||
|
data = data[:max_length * int(len(data) / max_length)] # 截取数据
|
|||
|
# np.random.shuffle(data) # 打乱数据(注释掉了)
|
|||
|
self.data = data.reshape(-1, max_length) # 将数据重塑为 (样本数, 最大长度) 的形状
|
|||
|
# 打印数据形状
|
|||
|
print("memmap:{} train data.shape:{}".format(memmap, self.data.shape))
|
|||
|
print("downloading finished.....")
|
|||
|
|
|||
|
def __len__(self):
|
|||
|
return self.data.shape[0] # 返回数据集的长度
|
|||
|
|
|||
|
def __getitem__(self, index: int):
|
|||
|
# 获取指定索引的样本
|
|||
|
sample = self.data[index]
|
|||
|
X = np.array(sample[:-1]).astype(np.int64) # 输入数据(去掉最后一个 token)
|
|||
|
Y = np.array(sample[1:]).astype(np.int64) # 目标数据(去掉第一个 token)
|
|||
|
|
|||
|
return torch.from_numpy(X), torch.from_numpy(Y) # 返回 PyTorch 张量
|
|||
|
|
|||
|
# 定义 SFTDataset 类,继承自 Dataset
|
|||
|
class SFTDataset(Dataset):
|
|||
|
def __init__(self, df, tokenizer, max_length=1024, prompt_max_len=512, answer_max_len=256):
|
|||
|
super().__init__()
|
|||
|
self.df = df # 数据框
|
|||
|
self.max_length = max_length # 最大序列长度
|
|||
|
self.prompt_max_len = prompt_max_len # 提示的最大长度
|
|||
|
self.answer_max_len = answer_max_len # 回答的最大长度
|
|||
|
#
|
|||
|
self.tokenizer = tokenizer # 分词器
|
|||
|
self.padding = 0 # 填充 token ID
|
|||
|
self.bos_id = self.tokenizer('<s>assistant').data['input_ids'] # 开始 token ID
|
|||
|
|
|||
|
def __len__(self):
|
|||
|
return self.df.shape[0] # 返回数据集的长度
|
|||
|
|
|||
|
def find_sublist_index(self, main_list, sub_list) -> int:
|
|||
|
last_index = -1
|
|||
|
for i in range(len(main_list) - len(sub_list) + 1):
|
|||
|
if main_list[i:i + len(sub_list)] == sub_list:
|
|||
|
last_index = i
|
|||
|
return last_index # 查找子列表在主列表中的最后一个索引
|
|||
|
|
|||
|
def safe_eval(self, s):
|
|||
|
try:
|
|||
|
res = eval(s)
|
|||
|
except Exception as e:
|
|||
|
return []
|
|||
|
return res # 安全地执行 eval 函数
|
|||
|
|
|||
|
def __getitem__(self, index: int):
|
|||
|
# 获取指定索引的样本
|
|||
|
sample = self.df.iloc[index]
|
|||
|
history = self.safe_eval(sample['history']) # 获取历史对话
|
|||
|
q = str(sample['q']) # 获取问题
|
|||
|
a = str(sample['a']) # 获取回答
|
|||
|
|
|||
|
messages = []
|
|||
|
for history_message in history:
|
|||
|
if len(history_message) <= 1:
|
|||
|
continue
|
|||
|
messages.append(
|
|||
|
{"role": 'user', "content": str(history_message[0])[:self.max_length // 2]}
|
|||
|
)
|
|||
|
messages.append(
|
|||
|
{"role": 'assistant', "content": str(history_message[1])[:self.max_length // 2]}
|
|||
|
)
|
|||
|
|
|||
|
messages += [
|
|||
|
{"role": "user", "content": q},
|
|||
|
{"role": "assistant", "content": a},
|
|||
|
]
|
|||
|
new_prompt = self.tokenizer.apply_chat_template(
|
|||
|
messages,
|
|||
|
tokenize=False,
|
|||
|
add_generation_prompt=True
|
|||
|
) # 生成新的提示
|
|||
|
input_id = self.tokenizer(new_prompt).data['input_ids'][:self.max_length] # 分词并截取
|
|||
|
|
|||
|
# 实际长度
|
|||
|
question_length = self.find_sublist_index(input_id, self.bos_id) + len(self.bos_id)
|
|||
|
# 没满最大长度的剩余部分
|
|||
|
padding_len = self.max_length - len(input_id)
|
|||
|
input_id = input_id + [self.padding] * padding_len # 填充到最大长度
|
|||
|
mask_len = len(input_id) - question_length - padding_len
|
|||
|
# 0表示不计算损失
|
|||
|
loss_mask = [0] * question_length + [1] * (mask_len) + [0] * padding_len
|
|||
|
|
|||
|
input_id = np.array(input_id)
|
|||
|
X = np.array(input_id[:-1]).astype(np.int64) # 输入数据(去掉最后一个 token)
|
|||
|
Y = np.array(input_id[1:]).astype(np.int64) # 目标数据(去掉第一个 token)
|
|||
|
loss_mask = np.array(loss_mask[1:]).astype(np.int64) # 损失掩码
|
|||
|
|
|||
|
X_tensor = torch.from_numpy(X)
|
|||
|
Y_tensor = torch.from_numpy(Y)
|
|||
|
loss_mask_tensor = torch.from_numpy(loss_mask)
|
|||
|
|
|||
|
return X_tensor, Y_tensor, loss_mask_tensor # 返回 PyTorch 张量
|
|||
|
|
|||
|
# 主函数
|
|||
|
if __name__ == "__main__":
|
|||
|
pass
|