720 lines
32 KiB
Python
720 lines
32 KiB
Python
|
|
import math
|
|||
|
|
import struct
|
|||
|
|
import inspect
|
|||
|
|
import time
|
|||
|
|
|
|||
|
|
from .LMConfig import LMConfig
|
|||
|
|
from typing import Any, Optional, Tuple, List, Union
|
|||
|
|
import numpy as np
|
|||
|
|
import torch
|
|||
|
|
import torch.nn.functional as F
|
|||
|
|
from torch import nn
|
|||
|
|
from transformers import PreTrainedModel
|
|||
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
|||
|
|
|
|||
|
|
|
|||
|
|
class RMSNorm(torch.nn.Module):
|
|||
|
|
def __init__(self, dim: int, eps: float = 1e-6):
|
|||
|
|
super().__init__()
|
|||
|
|
self.eps = eps
|
|||
|
|
self.weight = nn.Parameter(torch.ones(dim))
|
|||
|
|
|
|||
|
|
def _norm(self, x):
|
|||
|
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
|||
|
|
|
|||
|
|
def forward(self, x):
|
|||
|
|
return self.weight * self._norm(x.float()).type_as(x)
|
|||
|
|
|
|||
|
|
|
|||
|
|
def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
|||
|
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
|||
|
|
t = torch.arange(end, device=freqs.device) # type: ignore
|
|||
|
|
freqs = torch.outer(t, freqs).float() # type: ignore
|
|||
|
|
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
|||
|
|
return pos_cis
|
|||
|
|
|
|||
|
|
|
|||
|
|
def apply_rotary_emb(xq, xk, pos_cis):
|
|||
|
|
def unite_shape(pos_cis, x):
|
|||
|
|
ndim = x.ndim
|
|||
|
|
assert 0 <= 1 < ndim
|
|||
|
|
assert pos_cis.shape == (x.shape[1], x.shape[-1])
|
|||
|
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
|||
|
|
return pos_cis.view(*shape)
|
|||
|
|
|
|||
|
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
|||
|
|
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
|||
|
|
pos_cis = unite_shape(pos_cis, xq_)
|
|||
|
|
xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3)
|
|||
|
|
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
|
|||
|
|
return xq_out.type_as(xq), xk_out.type_as(xk)
|
|||
|
|
|
|||
|
|
|
|||
|
|
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|||
|
|
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
|||
|
|
bs, slen, n_kv_heads, head_dim = x.shape
|
|||
|
|
if n_rep == 1:
|
|||
|
|
return x
|
|||
|
|
return (
|
|||
|
|
x[:, :, :, None, :]
|
|||
|
|
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
|
|||
|
|
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
|
|||
|
|
class Attention(nn.Module):
|
|||
|
|
"""Self attention module without KV cache"""
|
|||
|
|
def __init__(self, args: LMConfig):
|
|||
|
|
super().__init__()
|
|||
|
|
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
|||
|
|
assert args.n_heads % self.n_kv_heads == 0
|
|||
|
|
self.n_local_heads = args.n_heads
|
|||
|
|
self.n_local_kv_heads = self.n_kv_heads
|
|||
|
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
|||
|
|
self.head_dim = args.dim // args.n_heads
|
|||
|
|
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
|
|||
|
|
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
|||
|
|
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
|||
|
|
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
|
|||
|
|
self.attn_dropout = nn.Dropout(args.dropout)
|
|||
|
|
self.resid_dropout = nn.Dropout(args.dropout)
|
|||
|
|
self.dropout = args.dropout
|
|||
|
|
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
|
|||
|
|
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
|||
|
|
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
|
|||
|
|
mask = torch.triu(mask, diagonal=1)
|
|||
|
|
self.register_buffer("mask", mask, persistent=False)
|
|||
|
|
|
|||
|
|
def forward(self, x: torch.Tensor, pos_cis: torch.Tensor):
|
|||
|
|
"""Forward pass without KV cache"""
|
|||
|
|
bsz, seq_len, _ = x.shape
|
|||
|
|
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
|||
|
|
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
|
|||
|
|
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
|||
|
|
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
|||
|
|
|
|||
|
|
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
|
|||
|
|
|
|||
|
|
# 注意:完全去除了KV cache相关代码
|
|||
|
|
|
|||
|
|
xq, xk, xv = (
|
|||
|
|
xq.transpose(1, 2),
|
|||
|
|
repeat_kv(xk, self.n_rep).transpose(1, 2),
|
|||
|
|
repeat_kv(xv, self.n_rep).transpose(1, 2)
|
|||
|
|
)
|
|||
|
|
if self.flash and seq_len != 1:
|
|||
|
|
dropout_p = self.dropout if self.training else 0.0
|
|||
|
|
output = F.scaled_dot_product_attention(
|
|||
|
|
xq, xk, xv,
|
|||
|
|
attn_mask=None,
|
|||
|
|
dropout_p=dropout_p,
|
|||
|
|
is_causal=True
|
|||
|
|
)
|
|||
|
|
else:
|
|||
|
|
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
|||
|
|
scores += self.mask[:, :, :seq_len, :seq_len]
|
|||
|
|
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
|||
|
|
scores = self.attn_dropout(scores)
|
|||
|
|
output = scores @ xv
|
|||
|
|
|
|||
|
|
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
|
|||
|
|
output = self.resid_dropout(self.wo(output))
|
|||
|
|
return output
|
|||
|
|
|
|||
|
|
|
|||
|
|
class MemoryGate(nn.Module):
|
|||
|
|
"""Product Key Memory-based gate mechanism for memory selection"""
|
|||
|
|
def __init__(self, config: LMConfig):
|
|||
|
|
super().__init__()
|
|||
|
|
self.config = config
|
|||
|
|
self.dim = config.dim
|
|||
|
|
self.knowledge_num = config.knowledge_num
|
|||
|
|
self.knowledge_dim = config.knowledge_dim
|
|||
|
|
self.num_selected = getattr(config, 'num_selected', 16)
|
|||
|
|
|
|||
|
|
# 确保知识库数量是完全平方数
|
|||
|
|
assert int(self.knowledge_num ** 0.5) ** 2 == self.knowledge_num, \
|
|||
|
|
f"knowledge_num ({self.knowledge_num}) must be a perfect square for product key memory"
|
|||
|
|
|
|||
|
|
self.num_keys = int(self.knowledge_num ** 0.5)
|
|||
|
|
|
|||
|
|
# 查询投影:将输入维度映射到knowledge_dim * 2(用于两个product key)
|
|||
|
|
self.gate_proj = nn.Linear(self.dim, self.knowledge_dim, bias=False)
|
|||
|
|
|
|||
|
|
# Product Key Memory: 两个独立的键集合
|
|||
|
|
self.keys = nn.Parameter(torch.randn(2, self.num_keys, self.knowledge_dim // 2))
|
|||
|
|
|
|||
|
|
self.dropout = nn.Dropout(config.dropout)
|
|||
|
|
|
|||
|
|
def forward(self, x: torch.Tensor):
|
|||
|
|
"""
|
|||
|
|
Args:
|
|||
|
|
x: [batch_size, seq_len, dim]
|
|||
|
|
Returns:
|
|||
|
|
memory_indices: [batch_size, seq_len, num_selected]
|
|||
|
|
memory_scores: [batch_size, seq_len, num_selected]
|
|||
|
|
balance_loss: 平衡损失(KL散度 + 基尼系数)
|
|||
|
|
stats: 监控统计信息字典
|
|||
|
|
"""
|
|||
|
|
bsz, seq_len, _ = x.shape
|
|||
|
|
|
|||
|
|
# 生成查询向量
|
|||
|
|
queries = self.gate_proj(x) # [batch, seq_len, knowledge_dim]
|
|||
|
|
|
|||
|
|
# 分割为两部分用于product key
|
|||
|
|
q1 = queries[:, :, :self.knowledge_dim // 2] # [batch, seq_len, knowledge_dim // 2]
|
|||
|
|
q2 = queries[:, :, self.knowledge_dim // 2:] # [batch, seq_len, knowledge_dim // 2]
|
|||
|
|
|
|||
|
|
# 计算与两个键集合的相似度
|
|||
|
|
scores_1 = torch.einsum('bsd,kd->bsk', q1, self.keys[0]) # [batch, seq_len, num_keys]
|
|||
|
|
scores_2 = torch.einsum('bsd,kd->bsk', q2, self.keys[1]) # [batch, seq_len, num_keys]
|
|||
|
|
|
|||
|
|
# 获取top-k
|
|||
|
|
topk_scores_1, topk_indices_1 = scores_1.topk(self.num_selected, dim=-1)
|
|||
|
|
topk_scores_2, topk_indices_2 = scores_2.topk(self.num_selected, dim=-1)
|
|||
|
|
|
|||
|
|
# 组合product key的结果
|
|||
|
|
combined_scores = topk_scores_1.unsqueeze(-1) + topk_scores_2.unsqueeze(-2) # [batch, seq_len, num_selected, num_selected]
|
|||
|
|
combined_indices = topk_indices_1.unsqueeze(-1) * self.num_keys + topk_indices_2.unsqueeze(-2) # [batch, seq_len, num_selected, num_selected]
|
|||
|
|
|
|||
|
|
# 展平并选择最终的top-k
|
|||
|
|
combined_scores = combined_scores.view(bsz, seq_len, -1)
|
|||
|
|
combined_indices = combined_indices.view(bsz, seq_len, -1)
|
|||
|
|
|
|||
|
|
final_scores, final_pk_indices = combined_scores.topk(self.num_selected, dim=-1)
|
|||
|
|
memory_indices = combined_indices.gather(-1, final_pk_indices)
|
|||
|
|
|
|||
|
|
# 归一化分数
|
|||
|
|
memory_scores = F.softmax(final_scores, dim=-1)
|
|||
|
|
memory_scores = self.dropout(memory_scores)
|
|||
|
|
|
|||
|
|
# 计算平衡损失和监控统计
|
|||
|
|
balance_loss, stats = self._compute_balance_loss_and_stats(memory_indices, memory_scores)
|
|||
|
|
|
|||
|
|
return memory_indices, memory_scores, balance_loss, stats
|
|||
|
|
|
|||
|
|
def _compute_balance_loss_and_stats(self, memory_indices, memory_scores):
|
|||
|
|
"""
|
|||
|
|
计算平衡损失和监控统计信息
|
|||
|
|
|
|||
|
|
Args:
|
|||
|
|
memory_indices: [batch_size, seq_len, num_selected]
|
|||
|
|
memory_scores: [batch_size, seq_len, num_selected]
|
|||
|
|
|
|||
|
|
Returns:
|
|||
|
|
balance_loss: 标量张量
|
|||
|
|
stats: 统计信息字典
|
|||
|
|
"""
|
|||
|
|
bsz, seq_len, num_selected = memory_indices.shape
|
|||
|
|
device = memory_indices.device
|
|||
|
|
|
|||
|
|
# 1. 计算记忆选择分布
|
|||
|
|
# 将所有选择的记忆索引展平
|
|||
|
|
flat_indices = memory_indices.view(-1) # [batch_size * seq_len * num_selected]
|
|||
|
|
|
|||
|
|
# 统计每个记忆条目被选中的次数
|
|||
|
|
memory_counts = torch.zeros(self.knowledge_num, device=device)
|
|||
|
|
memory_counts.scatter_add_(0, flat_indices, torch.ones_like(flat_indices, dtype=torch.float))
|
|||
|
|
|
|||
|
|
# 计算选择概率分布
|
|||
|
|
total_selections = bsz * seq_len * num_selected
|
|||
|
|
memory_probs = memory_counts / total_selections
|
|||
|
|
|
|||
|
|
# 2. 计算KL散度损失(与均匀分布的KL散度)
|
|||
|
|
uniform_prob = 1.0 / self.knowledge_num
|
|||
|
|
# 避免log(0)的问题
|
|||
|
|
memory_probs_safe = memory_probs + 1e-10
|
|||
|
|
kl_loss = F.kl_div(
|
|||
|
|
torch.log(memory_probs_safe),
|
|||
|
|
torch.full_like(memory_probs, uniform_prob),
|
|||
|
|
reduction='sum'
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
# 3. 计算基尼系数损失(衡量分布不平等程度)
|
|||
|
|
sorted_probs, _ = torch.sort(memory_probs)
|
|||
|
|
n = self.knowledge_num
|
|||
|
|
index = torch.arange(1, n + 1, device=device, dtype=torch.float)
|
|||
|
|
gini_coeff = (2 * torch.sum(index * sorted_probs) / (n * torch.sum(sorted_probs))) - (n + 1) / n
|
|||
|
|
gini_loss = gini_coeff # 基尼系数越大,分布越不均匀
|
|||
|
|
|
|||
|
|
# 4. 组合平衡损失
|
|||
|
|
balance_loss = 0.5 * kl_loss + 0.5 * gini_loss
|
|||
|
|
|
|||
|
|
# 5. 计算监控统计信息
|
|||
|
|
with torch.no_grad():
|
|||
|
|
# 记忆覆盖率:被选中的记忆条目占总数的比例
|
|||
|
|
coverage_rate = (memory_counts > 0).float().mean().item()
|
|||
|
|
|
|||
|
|
# 热点记忆:选择次数前10%的记忆条目
|
|||
|
|
top10_threshold = torch.quantile(memory_counts, 0.9)
|
|||
|
|
hot_memories = (memory_counts >= top10_threshold).sum().item()
|
|||
|
|
|
|||
|
|
# 死记忆:从未被选中的记忆条目
|
|||
|
|
dead_memories = (memory_counts == 0).sum().item()
|
|||
|
|
|
|||
|
|
# 记忆选择方差(衡量不平衡程度)
|
|||
|
|
selection_variance = memory_counts.var().item()
|
|||
|
|
|
|||
|
|
stats = {
|
|||
|
|
'gini_coefficient': gini_coeff.item(),
|
|||
|
|
'kl_divergence': kl_loss.item(),
|
|||
|
|
'coverage_rate': coverage_rate,
|
|||
|
|
'hot_memories': hot_memories,
|
|||
|
|
'dead_memories': dead_memories,
|
|||
|
|
'selection_variance': selection_variance,
|
|||
|
|
'max_selections': memory_counts.max().item(),
|
|||
|
|
'min_selections': memory_counts.min().item(),
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
return balance_loss, stats
|
|||
|
|
|
|||
|
|
|
|||
|
|
class GatedMemoryFusion(nn.Module):
|
|||
|
|
"""Gated MLP fusion for concatenated h_attn and selected memories"""
|
|||
|
|
def __init__(self, config: LMConfig):
|
|||
|
|
super().__init__()
|
|||
|
|
self.config = config
|
|||
|
|
self.dim = config.dim
|
|||
|
|
self.knowledge_dim = config.knowledge_dim
|
|||
|
|
self.num_selected = getattr(config, 'num_selected', 16)
|
|||
|
|
|
|||
|
|
# 输入维度:dim (h_attn) + num_selected * knowledge_dim (选中的记忆)
|
|||
|
|
# 实验1.4.6:记忆解码后立即压缩回knowledge_dim避免显存爆炸
|
|||
|
|
concat_dim = self.dim + self.num_selected * self.knowledge_dim
|
|||
|
|
|
|||
|
|
# 类似SwiGLU的门控MLP结构
|
|||
|
|
self.gate_proj = nn.Linear(concat_dim, self.dim, bias=False)
|
|||
|
|
self.up_proj = nn.Linear(concat_dim, self.dim, bias=False)
|
|||
|
|
self.down_proj = nn.Linear(self.dim, self.dim, bias=False)
|
|||
|
|
|
|||
|
|
self.dropout = nn.Dropout(config.dropout)
|
|||
|
|
|
|||
|
|
def forward(self, h_attn: torch.Tensor, selected_memories: torch.Tensor, memory_scores: torch.Tensor):
|
|||
|
|
"""
|
|||
|
|
Args:
|
|||
|
|
h_attn: [batch_size, seq_len, dim] - Self attention output
|
|||
|
|
selected_memories: [batch_size, seq_len, num_selected, knowledge_dim] - Selected memory data
|
|||
|
|
memory_scores: [batch_size, seq_len, num_selected] - Memory selection weights (not used in concatenation approach)
|
|||
|
|
Returns:
|
|||
|
|
output: [batch_size, seq_len, dim]
|
|||
|
|
"""
|
|||
|
|
bsz, seq_len, _ = h_attn.shape
|
|||
|
|
|
|||
|
|
# 将选中的记忆展平为一维向量
|
|||
|
|
# [batch, seq_len, num_selected, knowledge_dim] -> [batch, seq_len, num_selected * knowledge_dim]
|
|||
|
|
memory_flat = selected_memories.reshape(bsz, seq_len, -1)
|
|||
|
|
|
|||
|
|
# 拼接h_attn和记忆信息
|
|||
|
|
concat_input = torch.cat([h_attn, memory_flat], dim=-1) # [batch, seq_len, dim + num_selected * knowledge_dim]
|
|||
|
|
|
|||
|
|
# 门控MLP处理(类似SwiGLU)
|
|||
|
|
gate = F.silu(self.gate_proj(concat_input)) # [batch, seq_len, dim]
|
|||
|
|
up = self.up_proj(concat_input) # [batch, seq_len, dim]
|
|||
|
|
fusion_output = gate * up # Element-wise multiplication
|
|||
|
|
|
|||
|
|
# 输出投影
|
|||
|
|
output = self.down_proj(fusion_output) # [batch, seq_len, dim]
|
|||
|
|
output = self.dropout(output)
|
|||
|
|
|
|||
|
|
return output
|
|||
|
|
|
|||
|
|
|
|||
|
|
class MiniMindBlock(nn.Module):
|
|||
|
|
"""Transformer block with memory-based cross attention instead of FFN"""
|
|||
|
|
def __init__(self, layer_id: int, config: LMConfig):
|
|||
|
|
super().__init__()
|
|||
|
|
self.config = config # 保存config引用
|
|||
|
|
self.n_heads = config.n_heads
|
|||
|
|
self.dim = config.dim
|
|||
|
|
self.head_dim = config.dim // config.n_heads
|
|||
|
|
self.attention = Attention(config)
|
|||
|
|
|
|||
|
|
self.layer_id = layer_id
|
|||
|
|
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
|||
|
|
self.memory_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
|||
|
|
|
|||
|
|
# 记忆相关模块
|
|||
|
|
self.memory_gate = MemoryGate(config)
|
|||
|
|
self.gated_memory_fusion = GatedMemoryFusion(config)
|
|||
|
|
|
|||
|
|
def forward(self, x, pos_cis, memory_bank, tok_embeddings, collect_ema_stats=False):
|
|||
|
|
"""
|
|||
|
|
Args:
|
|||
|
|
x: [batch_size, seq_len, dim]
|
|||
|
|
pos_cis: positional encoding
|
|||
|
|
memory_bank: [knowledge_num, knowledge_dim] - shared memory bank
|
|||
|
|
collect_ema_stats: 是否收集EMA更新统计信息
|
|||
|
|
|
|||
|
|
Returns:
|
|||
|
|
out: [batch_size, seq_len, dim]
|
|||
|
|
balance_loss: 该层的平衡损失
|
|||
|
|
layer_stats: 该层的监控统计信息
|
|||
|
|
ema_stats: EMA更新统计信息(如果collect_ema_stats=True)
|
|||
|
|
"""
|
|||
|
|
# Self attention
|
|||
|
|
h_attn = self.attention(self.attention_norm(x), pos_cis)
|
|||
|
|
h = x + h_attn
|
|||
|
|
|
|||
|
|
# 使用h_attn作为门控和交叉注意力的输入(核心:self attention的输出)
|
|||
|
|
h_for_memory = self.memory_norm(h_attn)
|
|||
|
|
|
|||
|
|
# 门控选择记忆
|
|||
|
|
memory_indices, memory_scores, balance_loss, layer_stats = self.memory_gate(h_for_memory)
|
|||
|
|
|
|||
|
|
# 根据索引获取记忆数据 - 实验1.4.6:解码token_id为特征向量
|
|||
|
|
bsz, seq_len, num_selected = memory_indices.shape
|
|||
|
|
memory_indices_flat = memory_indices.view(-1)
|
|||
|
|
selected_token_ids = memory_bank[memory_indices_flat] # [batch * seq_len * num_selected, knowledge_length]
|
|||
|
|
|
|||
|
|
# 解码token_ids为特征向量并立即压缩避免显存爆炸
|
|||
|
|
selected_embeddings = tok_embeddings(selected_token_ids) # [batch * seq_len * num_selected, knowledge_length, dim]
|
|||
|
|
knowledge_length = selected_token_ids.size(-1)
|
|||
|
|
|
|||
|
|
# 立即压缩:knowledge_length * dim -> knowledge_dim 避免显存爆炸
|
|||
|
|
# 使用平均池化压缩knowledge_length维度
|
|||
|
|
pooled_memory = selected_embeddings.mean(dim=1) # [batch * seq_len * num_selected, dim]
|
|||
|
|
|
|||
|
|
# 投影到knowledge_dim维度
|
|||
|
|
if self.dim > self.config.knowledge_dim:
|
|||
|
|
# 截断到knowledge_dim
|
|||
|
|
compressed_memory = pooled_memory[:, :self.config.knowledge_dim]
|
|||
|
|
elif self.dim < self.config.knowledge_dim:
|
|||
|
|
# 填充到knowledge_dim
|
|||
|
|
pad_size = self.config.knowledge_dim - self.dim
|
|||
|
|
compressed_memory = F.pad(pooled_memory, (0, pad_size), 'constant', 0)
|
|||
|
|
else:
|
|||
|
|
compressed_memory = pooled_memory
|
|||
|
|
|
|||
|
|
selected_memory = compressed_memory.view(bsz, seq_len, num_selected, self.config.knowledge_dim) # [batch, seq_len, num_selected, knowledge_dim]
|
|||
|
|
|
|||
|
|
# 门控MLP融合:串型连接h_attn和选中的记忆
|
|||
|
|
memory_output = self.gated_memory_fusion(h_for_memory, selected_memory, memory_scores)
|
|||
|
|
|
|||
|
|
# 残差连接
|
|||
|
|
out = h + memory_output
|
|||
|
|
|
|||
|
|
# 收集EMA更新统计信息(仅在训练时且启用时)
|
|||
|
|
ema_stats = None
|
|||
|
|
if collect_ema_stats and self.training:
|
|||
|
|
ema_stats = {
|
|||
|
|
'memory_indices': memory_indices, # [batch, seq_len, num_selected]
|
|||
|
|
'memory_scores': memory_scores, # [batch, seq_len, num_selected]
|
|||
|
|
'h_for_memory': h_for_memory, # [batch, seq_len, dim]
|
|||
|
|
'selected_memory': selected_memory, # [batch, seq_len, num_selected, knowledge_dim]
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
if collect_ema_stats:
|
|||
|
|
return out, balance_loss, layer_stats, ema_stats
|
|||
|
|
else:
|
|||
|
|
return out, balance_loss, layer_stats
|
|||
|
|
|
|||
|
|
|
|||
|
|
class MiniMindLM(PreTrainedModel):
|
|||
|
|
config_class = LMConfig
|
|||
|
|
|
|||
|
|
def __init__(self, params: LMConfig = None):
|
|||
|
|
self.params = params or LMConfig()
|
|||
|
|
super().__init__(self.params)
|
|||
|
|
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
|
|||
|
|
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
|
|||
|
|
self.dropout = nn.Dropout(params.dropout)
|
|||
|
|
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
|
|||
|
|
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
|||
|
|
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
|
|||
|
|
self.tok_embeddings.weight = self.output.weight
|
|||
|
|
self.register_buffer("pos_cis",
|
|||
|
|
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta),
|
|||
|
|
persistent=False)
|
|||
|
|
|
|||
|
|
# 初始化共享记忆库 - 实验1.4.6:存储token_id而非特征向量
|
|||
|
|
# VQ-VAE风格:memory_bank作为codebook,使用EMA更新而非梯度更新
|
|||
|
|
if params.use_ema_update:
|
|||
|
|
self.memory_bank = nn.Parameter(
|
|||
|
|
torch.randint(0, params.vocab_size, (params.knowledge_num, params.knowledge_length)),
|
|||
|
|
requires_grad=False # 禁用梯度更新,使用EMA更新
|
|||
|
|
)
|
|||
|
|
else:
|
|||
|
|
self.memory_bank = nn.Parameter(
|
|||
|
|
torch.randint(0, params.vocab_size, (params.knowledge_num, params.knowledge_length)),
|
|||
|
|
requires_grad=True # 传统梯度更新
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
# EMA更新相关缓冲区
|
|||
|
|
if params.use_ema_update:
|
|||
|
|
# 记录每个memory条目的更新统计
|
|||
|
|
self.register_buffer('ema_update_count', torch.zeros(params.knowledge_num), persistent=False)
|
|||
|
|
# 注意:现在memory_bank存储token_id,但EMA在特征空间进行,所以不需要sum_buffer了
|
|||
|
|
# self.register_buffer('ema_sum_buffer', torch.zeros_like(self.memory_bank), persistent=False)
|
|||
|
|
# EMA更新频率计数器
|
|||
|
|
self.register_buffer('ema_step_counter', torch.zeros(1, dtype=torch.long), persistent=False)
|
|||
|
|
|
|||
|
|
# 记录上一步的记忆库状态,用于计算更新统计
|
|||
|
|
self.register_buffer('prev_memory_bank', torch.zeros_like(self.memory_bank), persistent=False)
|
|||
|
|
|
|||
|
|
self.OUT = CausalLMOutputWithPast()
|
|||
|
|
|
|||
|
|
def get_memory_update_stats(self):
|
|||
|
|
"""
|
|||
|
|
计算记忆库更新统计信息
|
|||
|
|
|
|||
|
|
Returns:
|
|||
|
|
update_stats: 包含更新统计的字典
|
|||
|
|
"""
|
|||
|
|
with torch.no_grad():
|
|||
|
|
if hasattr(self, 'prev_memory_bank') and self.prev_memory_bank.numel() > 0:
|
|||
|
|
# 计算L2距离变化
|
|||
|
|
l2_distance = torch.norm(self.memory_bank - self.prev_memory_bank, p=2, dim=-1)
|
|||
|
|
avg_l2_distance = l2_distance.mean().item()
|
|||
|
|
max_l2_distance = l2_distance.max().item()
|
|||
|
|
|
|||
|
|
# 计算余弦相似度
|
|||
|
|
cos_sim = F.cosine_similarity(
|
|||
|
|
self.memory_bank.view(-1),
|
|||
|
|
self.prev_memory_bank.view(-1),
|
|||
|
|
dim=0
|
|||
|
|
).item()
|
|||
|
|
|
|||
|
|
# 计算更新率(发生显著变化的记忆条目比例)
|
|||
|
|
threshold = 0.01 # 更新阈值
|
|||
|
|
updated_memories = (l2_distance > threshold).sum().item()
|
|||
|
|
update_rate = updated_memories / self.memory_bank.size(0)
|
|||
|
|
|
|||
|
|
update_stats = {
|
|||
|
|
'memory_avg_l2_change': avg_l2_distance,
|
|||
|
|
'memory_max_l2_change': max_l2_distance,
|
|||
|
|
'memory_cosine_similarity': cos_sim,
|
|||
|
|
'memory_update_rate': update_rate,
|
|||
|
|
'memory_updated_count': updated_memories
|
|||
|
|
}
|
|||
|
|
else:
|
|||
|
|
# 第一次调用时的默认值
|
|||
|
|
update_stats = {
|
|||
|
|
'memory_avg_l2_change': 0.0,
|
|||
|
|
'memory_max_l2_change': 0.0,
|
|||
|
|
'memory_cosine_similarity': 1.0,
|
|||
|
|
'memory_update_rate': 0.0,
|
|||
|
|
'memory_updated_count': 0
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
# 更新prev_memory_bank
|
|||
|
|
self.prev_memory_bank.copy_(self.memory_bank)
|
|||
|
|
|
|||
|
|
return update_stats
|
|||
|
|
|
|||
|
|
def forward(self,
|
|||
|
|
input_ids: Optional[torch.Tensor] = None,
|
|||
|
|
**args):
|
|||
|
|
"""Forward pass without KV cache support"""
|
|||
|
|
start_pos = args.get('start_pos', 0)
|
|||
|
|
collect_ema_stats = args.get('collect_ema_stats', self.params.use_ema_update and self.training)
|
|||
|
|
|
|||
|
|
h = self.dropout(self.tok_embeddings(input_ids))
|
|||
|
|
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
|
|||
|
|
|
|||
|
|
# 收集所有层的平衡损失和统计信息
|
|||
|
|
total_balance_loss = 0
|
|||
|
|
all_layer_stats = {}
|
|||
|
|
all_ema_stats = {}
|
|||
|
|
|
|||
|
|
for layer_idx, layer in enumerate(self.layers):
|
|||
|
|
if collect_ema_stats:
|
|||
|
|
h, balance_loss, layer_stats, ema_stats = layer(h, pos_cis, self.memory_bank, self.tok_embeddings, collect_ema_stats=True)
|
|||
|
|
all_ema_stats[f'layer_{layer_idx}'] = ema_stats
|
|||
|
|
else:
|
|||
|
|
h, balance_loss, layer_stats = layer(h, pos_cis, self.memory_bank, self.tok_embeddings, collect_ema_stats=False)
|
|||
|
|
|
|||
|
|
total_balance_loss += balance_loss
|
|||
|
|
# 为每层的统计信息添加前缀
|
|||
|
|
for key, value in layer_stats.items():
|
|||
|
|
all_layer_stats[f'layer_{layer_idx}_{key}'] = value
|
|||
|
|
|
|||
|
|
logits = self.output(self.norm(h))
|
|||
|
|
|
|||
|
|
# 使用总的平衡损失作为aux_loss
|
|||
|
|
aux_loss = total_balance_loss
|
|||
|
|
|
|||
|
|
self.OUT.__setitem__('last_hidden_state', h)
|
|||
|
|
self.OUT.__setitem__('logits', logits)
|
|||
|
|
self.OUT.__setitem__('aux_loss', aux_loss)
|
|||
|
|
self.OUT.__setitem__('layer_stats', all_layer_stats) # 添加层级统计信息
|
|||
|
|
self.OUT.__setitem__('ema_stats', all_ema_stats if collect_ema_stats else None) # 添加EMA统计信息
|
|||
|
|
self.OUT.__setitem__('past_key_values', None) # 不支持KV cache
|
|||
|
|
return self.OUT
|
|||
|
|
|
|||
|
|
@torch.inference_mode()
|
|||
|
|
def generate(self, input_ids, eos_token_id=2, max_new_tokens=1024, temperature=0.75, top_p=0.90,
|
|||
|
|
stream=False, rp=1., pad_token_id=0, num_return_sequences=1, **args):
|
|||
|
|
"""Generate without KV cache"""
|
|||
|
|
# 流式生成
|
|||
|
|
if stream:
|
|||
|
|
return self._stream(input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, **args)
|
|||
|
|
|
|||
|
|
# 直接生成
|
|||
|
|
generated = []
|
|||
|
|
for i in range(input_ids.size(0)):
|
|||
|
|
non_pad = input_ids[i][input_ids[i] != pad_token_id].unsqueeze(0)
|
|||
|
|
for _ in range(num_return_sequences):
|
|||
|
|
out = self._stream(non_pad, eos_token_id, max_new_tokens, temperature, top_p, rp, **args)
|
|||
|
|
tokens_list = [tokens[:, -1:] for tokens in out]
|
|||
|
|
gen = torch.cat(tokens_list, dim=-1) if tokens_list else non_pad
|
|||
|
|
full_sequence = torch.cat([non_pad, gen], dim=-1)
|
|||
|
|
generated.append(full_sequence)
|
|||
|
|
|
|||
|
|
max_length = max(seq.size(1) for seq in generated)
|
|||
|
|
generated = [
|
|||
|
|
torch.cat(
|
|||
|
|
[seq, torch.full((1, max_length - seq.size(1)), pad_token_id, dtype=seq.dtype, device=seq.device)],
|
|||
|
|
dim=-1)
|
|||
|
|
for seq in generated
|
|||
|
|
]
|
|||
|
|
output = torch.cat(generated, dim=0)
|
|||
|
|
res = output.view(input_ids.size(0) * num_return_sequences, -1)
|
|||
|
|
return res
|
|||
|
|
|
|||
|
|
def _stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, **args):
|
|||
|
|
"""Stream generation without KV cache - regenerates full sequence each time"""
|
|||
|
|
start = input_ids.shape[1]
|
|||
|
|
while input_ids.shape[1] < start + max_new_tokens:
|
|||
|
|
# 每次都重新计算整个序列(因为没有KV cache)
|
|||
|
|
out = self(input_ids, **args)
|
|||
|
|
logits = out.logits[:, -1, :]
|
|||
|
|
|
|||
|
|
# 重复惩罚
|
|||
|
|
logits[:, list(set(input_ids.tolist()[0]))] /= rp
|
|||
|
|
logits /= (temperature + 1e-9)
|
|||
|
|
|
|||
|
|
# Top-p采样
|
|||
|
|
if top_p is not None and top_p < 1.0:
|
|||
|
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
|||
|
|
sorted_probs = F.softmax(sorted_logits, dim=-1)
|
|||
|
|
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
|||
|
|
sorted_indices_to_remove = cumulative_probs > top_p
|
|||
|
|
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
|
|||
|
|
sorted_indices_to_remove[:, 0] = False
|
|||
|
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
|||
|
|
logits[indices_to_remove] = -float('Inf')
|
|||
|
|
|
|||
|
|
input_ids_next = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
|
|||
|
|
input_ids = torch.cat((input_ids, input_ids_next), dim=1)
|
|||
|
|
yield input_ids[:, start:]
|
|||
|
|
if input_ids_next.item() == eos_token_id:
|
|||
|
|
break
|
|||
|
|
|
|||
|
|
def apply_ema_update(self, ema_stats):
|
|||
|
|
"""
|
|||
|
|
应用token-based EMA更新到memory_bank
|
|||
|
|
实验1.4.6:批量化tensor操作优化版本
|
|||
|
|
|
|||
|
|
Args:
|
|||
|
|
ema_stats: 从forward pass收集的EMA统计信息,格式为:
|
|||
|
|
{'layer_0': {'memory_indices': ..., 'h_for_memory': ...}, 'layer_1': ...}
|
|||
|
|
"""
|
|||
|
|
if not self.params.use_ema_update:
|
|||
|
|
return {}
|
|||
|
|
|
|||
|
|
# 增加EMA步数计数器
|
|||
|
|
self.ema_step_counter += 1
|
|||
|
|
|
|||
|
|
# 检查是否需要进行EMA更新
|
|||
|
|
if self.ema_step_counter % self.params.ema_update_freq != 0:
|
|||
|
|
return {'ema_update_applied': False, 'reason': 'frequency_check_failed'}
|
|||
|
|
|
|||
|
|
with torch.no_grad():
|
|||
|
|
device = self.memory_bank.device
|
|||
|
|
knowledge_num, knowledge_length = self.memory_bank.shape
|
|||
|
|
dim = self.params.dim
|
|||
|
|
|
|||
|
|
# 🚀 批量收集所有层的数据(避免字典操作)
|
|||
|
|
all_indices = []
|
|||
|
|
all_features = []
|
|||
|
|
total_selections = 0
|
|||
|
|
total_layers = 0
|
|||
|
|
|
|||
|
|
# 收集所有层的EMA统计信息
|
|||
|
|
for layer_ema_stats in ema_stats.values():
|
|||
|
|
if layer_ema_stats is None:
|
|||
|
|
continue
|
|||
|
|
|
|||
|
|
total_layers += 1
|
|||
|
|
memory_indices = layer_ema_stats['memory_indices'] # [batch, seq_len, num_selected]
|
|||
|
|
h_for_memory = layer_ema_stats['h_for_memory'] # [batch, seq_len, dim]
|
|||
|
|
|
|||
|
|
bsz, seq_len, num_selected = memory_indices.shape
|
|||
|
|
total_selections += bsz * seq_len * num_selected
|
|||
|
|
|
|||
|
|
# 展平索引和对应的h_for_memory
|
|||
|
|
flat_indices = memory_indices.view(-1) # [batch * seq_len * num_selected]
|
|||
|
|
|
|||
|
|
# 为每个选择位置复制对应的h_for_memory
|
|||
|
|
h_expanded = h_for_memory.unsqueeze(2).expand(-1, -1, num_selected, -1) # [batch, seq_len, num_selected, dim]
|
|||
|
|
flat_h = h_expanded.reshape(-1, dim) # [batch * seq_len * num_selected, dim]
|
|||
|
|
|
|||
|
|
all_indices.append(flat_indices)
|
|||
|
|
all_features.append(flat_h)
|
|||
|
|
|
|||
|
|
if not all_indices:
|
|||
|
|
return {'ema_update_applied': False, 'reason': 'no_ema_stats'}
|
|||
|
|
|
|||
|
|
# 🚀 合并所有数据
|
|||
|
|
all_indices = torch.cat(all_indices, dim=0) # [total_selections]
|
|||
|
|
all_features = torch.cat(all_features, dim=0) # [total_selections, dim]
|
|||
|
|
|
|||
|
|
# 🚀 批量计算每个memory的平均特征(避免循环)
|
|||
|
|
unique_indices, inverse_indices = torch.unique(all_indices, return_inverse=True)
|
|||
|
|
|
|||
|
|
# 使用scatter_add批量聚合(确保数据类型一致)
|
|||
|
|
aggregated_features = torch.zeros(unique_indices.size(0), dim, device=device, dtype=all_features.dtype)
|
|||
|
|
count_per_memory = torch.zeros(unique_indices.size(0), device=device, dtype=all_features.dtype)
|
|||
|
|
|
|||
|
|
aggregated_features.scatter_add_(0, inverse_indices.unsqueeze(1).expand(-1, dim), all_features)
|
|||
|
|
count_per_memory.scatter_add_(0, inverse_indices, torch.ones_like(inverse_indices, dtype=all_features.dtype))
|
|||
|
|
|
|||
|
|
# 计算平均值
|
|||
|
|
avg_features = aggregated_features / count_per_memory.unsqueeze(1) # [unique_count, dim]
|
|||
|
|
|
|||
|
|
# 🚀 分批EMA更新(控制显存使用)
|
|||
|
|
batch_size = 4096 # 每批处理4096个memory,控制显存
|
|||
|
|
updated_memories = 0
|
|||
|
|
|
|||
|
|
for i in range(0, unique_indices.size(0), batch_size):
|
|||
|
|
end_i = min(i + batch_size, unique_indices.size(0))
|
|||
|
|
batch_indices = unique_indices[i:end_i]
|
|||
|
|
batch_avg_features = avg_features[i:end_i]
|
|||
|
|
|
|||
|
|
# 当前批次的token解码
|
|||
|
|
current_tokens_batch = self.memory_bank[batch_indices] # [batch_size, knowledge_length]
|
|||
|
|
current_embeddings_batch = self.tok_embeddings(current_tokens_batch.view(-1)).view(
|
|||
|
|
batch_indices.size(0), knowledge_length, dim) # [batch_size, knowledge_length, dim]
|
|||
|
|
|
|||
|
|
old_features_batch = current_embeddings_batch.view(batch_indices.size(0), -1) # [batch_size, knowledge_length * dim]
|
|||
|
|
expanded_new_features = batch_avg_features.repeat(1, knowledge_length) # [batch_size, knowledge_length * dim]
|
|||
|
|
|
|||
|
|
# EMA更新:new = γ * old + (1-γ) * new_avg
|
|||
|
|
updated_features_batch = (
|
|||
|
|
self.params.ema_decay * old_features_batch +
|
|||
|
|
(1 - self.params.ema_decay) * expanded_new_features
|
|||
|
|
)
|
|||
|
|
|
|||
|
|
# 分批编码为token_ids(关键:控制输出层的输入大小)
|
|||
|
|
updated_reshaped = updated_features_batch.view(-1, dim) # [batch_size * knowledge_length, dim]
|
|||
|
|
logits_batch = self.output(updated_reshaped) # [batch_size * knowledge_length, vocab_size]
|
|||
|
|
new_token_ids_batch = torch.argmax(logits_batch, dim=-1).view(batch_indices.size(0), knowledge_length)
|
|||
|
|
|
|||
|
|
# 分批更新memory_bank
|
|||
|
|
self.memory_bank[batch_indices] = new_token_ids_batch
|
|||
|
|
updated_memories += batch_indices.size(0)
|
|||
|
|
|
|||
|
|
update_ratio = updated_memories / knowledge_num
|
|||
|
|
|
|||
|
|
update_stats = {
|
|||
|
|
'ema_update_applied': True,
|
|||
|
|
'ema_step': self.ema_step_counter.item(),
|
|||
|
|
'total_selections': total_selections,
|
|||
|
|
'total_layers': total_layers,
|
|||
|
|
'updated_memories': updated_memories,
|
|||
|
|
'update_ratio': update_ratio,
|
|||
|
|
'ema_decay': self.params.ema_decay,
|
|||
|
|
'selected_memory_coverage': updated_memories / knowledge_num,
|
|||
|
|
}
|
|||
|
|
|
|||
|
|
return update_stats
|