2024-08-28 16:41:44 +08:00
|
|
|
|
import os
|
|
|
|
|
import platform
|
|
|
|
|
import time
|
|
|
|
|
import math
|
|
|
|
|
import warnings
|
|
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import torch
|
|
|
|
|
import torch.nn.functional as F
|
|
|
|
|
import torch.distributed as dist
|
|
|
|
|
from contextlib import nullcontext
|
|
|
|
|
|
|
|
|
|
from torch import optim
|
|
|
|
|
from torch.nn.parallel import DistributedDataParallel
|
|
|
|
|
from torch.optim.lr_scheduler import CosineAnnealingLR
|
|
|
|
|
from torch.utils.data import DataLoader, DistributedSampler
|
|
|
|
|
from transformers import AutoTokenizer, AutoModel
|
|
|
|
|
from model.model import Transformer
|
|
|
|
|
from model.LMConfig import LMConfig
|
|
|
|
|
from model.dataset import SFTDataset
|
|
|
|
|
|
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def Logger(content):
|
|
|
|
|
if not ddp or dist.get_rank() == 0:
|
|
|
|
|
print(content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_lr(it, all):
|
|
|
|
|
warmup_iters = 0
|
|
|
|
|
lr_decay_iters = all
|
|
|
|
|
min_lr = learning_rate / epochs
|
|
|
|
|
|
|
|
|
|
if it < warmup_iters:
|
|
|
|
|
return learning_rate * it / warmup_iters
|
|
|
|
|
if it > lr_decay_iters:
|
|
|
|
|
return min_lr
|
|
|
|
|
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
|
|
|
|
|
assert 0 <= decay_ratio <= 1
|
|
|
|
|
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
|
|
|
|
return min_lr + coeff * (learning_rate - min_lr)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# ------------------------------------------------------------------------------
|
|
|
|
|
def train_epoch(epoch):
|
|
|
|
|
start_time = time.time()
|
|
|
|
|
for step, (X, Y, loss_mask) in enumerate(train_loader):
|
|
|
|
|
X = X.to(device)
|
|
|
|
|
Y = Y.to(device)
|
|
|
|
|
loss_mask = loss_mask.to(device)
|
|
|
|
|
lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch)
|
|
|
|
|
for param_group in optimizer.param_groups:
|
|
|
|
|
param_group['lr'] = lr
|
|
|
|
|
|
|
|
|
|
with ctx:
|
|
|
|
|
logits = model(X, Y).logits
|
|
|
|
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), Y.view(-1), ignore_index=0, reduction='none')
|
|
|
|
|
loss_mask = loss_mask.view(-1)
|
|
|
|
|
loss = torch.sum(loss * loss_mask) / loss_mask.sum()
|
|
|
|
|
|
|
|
|
|
# Backward pass
|
|
|
|
|
scaler.scale(loss).backward()
|
|
|
|
|
|
|
|
|
|
# Unscale gradients and clip them
|
|
|
|
|
scaler.unscale_(optimizer)
|
|
|
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
|
|
|
|
|
|
|
|
|
# Update parameters
|
|
|
|
|
scaler.step(optimizer)
|
|
|
|
|
scaler.update()
|
|
|
|
|
|
|
|
|
|
# Zero the gradients
|
|
|
|
|
optimizer.zero_grad(set_to_none=True)
|
|
|
|
|
|
|
|
|
|
# 打印日志
|
|
|
|
|
if step % 100 == 0:
|
|
|
|
|
spend_time = time.time() - start_time
|
|
|
|
|
Logger(
|
|
|
|
|
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.8f} epoch_Time:{}min:'.format(
|
|
|
|
|
epoch,
|
|
|
|
|
epochs,
|
|
|
|
|
step,
|
|
|
|
|
iter_per_epoch,
|
|
|
|
|
loss,
|
|
|
|
|
optimizer.param_groups[-1]['lr'],
|
|
|
|
|
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
|
|
|
|
|
|
|
|
|
if (step + 1) % 1000 == 0 and (not ddp or dist.get_rank() == 0):
|
|
|
|
|
model.eval()
|
|
|
|
|
# torch.save(model.state_dict(), '{}/sft_iter_{}.pth'.format(save_dir, int(step + epoch * iter_per_epoch)))
|
|
|
|
|
moe_path = '_moe' if lm_config.use_moe else ''
|
|
|
|
|
ckp = f'{save_dir}/full_sft_{lm_config.dim}{moe_path}.pth'
|
|
|
|
|
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
|
|
|
|
state_dict = model.module.state_dict()
|
|
|
|
|
else:
|
|
|
|
|
state_dict = model.state_dict()
|
|
|
|
|
|
|
|
|
|
torch.save(state_dict, ckp)
|
|
|
|
|
model.train()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_model(lm_config):
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
|
|
|
|
|
model_from = 1 # 1从权重,2用transformers
|
|
|
|
|
|
|
|
|
|
def count_parameters(model):
|
|
|
|
|
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
|
|
|
|
|
|
|
|
|
if model_from == 1:
|
2024-09-15 15:08:04 +08:00
|
|
|
|
model = Transformer(lm_config)
|
2024-08-28 16:41:44 +08:00
|
|
|
|
moe_path = '_moe' if lm_config.use_moe else ''
|
2024-09-17 11:33:31 +08:00
|
|
|
|
# ckp = f'./out/pretrain_{lm_config.dim}{moe_path}.pth'
|
|
|
|
|
# state_dict = torch.load(ckp, map_location=device)
|
|
|
|
|
# unwanted_prefix = '_orig_mod.'
|
|
|
|
|
# for k, v in list(state_dict.items()):
|
|
|
|
|
# if k.startswith(unwanted_prefix):
|
|
|
|
|
# state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
|
|
|
|
# model.load_state_dict(state_dict, strict=False)
|
2024-08-28 16:41:44 +08:00
|
|
|
|
else:
|
|
|
|
|
model = AutoModel.from_pretrained('./minimind', trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
Logger(f'LLM总参数量:{count_parameters(model) / 1e6:.3f} 百万')
|
|
|
|
|
model = model.to(device)
|
|
|
|
|
|
|
|
|
|
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_distributed_mode():
|
|
|
|
|
if not ddp: return
|
|
|
|
|
global ddp_local_rank, DEVICE
|
|
|
|
|
|
|
|
|
|
dist.init_process_group(backend="nccl")
|
|
|
|
|
ddp_rank = int(os.environ["RANK"])
|
|
|
|
|
ddp_local_rank = int(os.environ["LOCAL_RANK"])
|
|
|
|
|
ddp_world_size = int(os.environ["WORLD_SIZE"])
|
|
|
|
|
DEVICE = f"cuda:{ddp_local_rank}"
|
|
|
|
|
torch.cuda.set_device(DEVICE)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# I/O
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
lm_config = LMConfig()
|
|
|
|
|
max_seq_len = lm_config.max_seq_len
|
|
|
|
|
out_dir = 'out'
|
|
|
|
|
epochs = 19
|
|
|
|
|
gradient_accumulation_steps = 1
|
2024-09-17 11:33:31 +08:00
|
|
|
|
batch_size = 40
|
|
|
|
|
learning_rate = 1e-4
|
2024-08-28 16:41:44 +08:00
|
|
|
|
device = 'cuda:0'
|
|
|
|
|
dtype = 'bfloat16'
|
|
|
|
|
# dtype = 'float16'
|
|
|
|
|
save_dir = os.path.join(out_dir)
|
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
|
|
|
tokens_per_iter = gradient_accumulation_steps * batch_size * max_seq_len
|
|
|
|
|
os.makedirs(out_dir, exist_ok=True)
|
|
|
|
|
torch.manual_seed(1337)
|
|
|
|
|
device_type = device if "cuda" in device else "cpu"
|
|
|
|
|
ctx = (
|
|
|
|
|
nullcontext()
|
|
|
|
|
if device_type == "cpu"
|
|
|
|
|
else torch.cuda.amp.autocast()
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
### ddp config
|
|
|
|
|
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
|
|
|
|
|
ddp_local_rank, DEVICE = 0, "cuda:0"
|
|
|
|
|
if ddp:
|
|
|
|
|
init_distributed_mode()
|
|
|
|
|
device = torch.device(DEVICE)
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
model, tokenizer = init_model(lm_config)
|
|
|
|
|
# -----init dataloader------
|
2024-09-17 11:33:31 +08:00
|
|
|
|
df = pd.read_csv('./dataset/sft_data_single.csv')
|
2024-08-28 16:41:44 +08:00
|
|
|
|
df = df.sample(frac=1.0)
|
|
|
|
|
train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len)
|
|
|
|
|
train_sampler = DistributedSampler(train_ds) if ddp else None
|
|
|
|
|
train_loader = DataLoader(
|
|
|
|
|
train_ds,
|
|
|
|
|
batch_size=batch_size,
|
|
|
|
|
pin_memory=False,
|
|
|
|
|
drop_last=False,
|
|
|
|
|
shuffle=False,
|
|
|
|
|
num_workers=8,
|
|
|
|
|
sampler=train_sampler
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == dtype))
|
|
|
|
|
# optimizer
|
|
|
|
|
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
|
|
|
|
|
|
|
|
|
iter_per_epoch = len(train_loader)
|
|
|
|
|
# compile the model
|
|
|
|
|
if False and not lm_config.use_moe and platform.system() != 'Windows' and float(
|
|
|
|
|
torch.__version__.split('.')[0]) >= 2:
|
|
|
|
|
Logger("compiling the model... (takes a ~minute)")
|
|
|
|
|
unoptimized_model = model
|
|
|
|
|
model = torch.compile(model) # requires PyTorch 2.0
|
|
|
|
|
|
|
|
|
|
if ddp:
|
|
|
|
|
# Ignore the pos_cis buffer so that DDP does not broadcast it at
|
|
|
|
|
# construction time since NCCL does not support ComplexFloat
|
|
|
|
|
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
|
|
|
|
|
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
|
|
|
|
|
|
|
|
|
|
# training loop
|
|
|
|
|
for epoch in range(epochs):
|
|
|
|
|
train_epoch(epoch)
|