2025-09-06 12:12:08 +08:00
|
|
|
|
#!/bin/bash
|
|
|
|
|
|
|
|
|
|
|
|
# ============================================================================
|
|
|
|
|
|
# MiniMind 实验脚本 - Experiment 1.4.10
|
|
|
|
|
|
# ============================================================================
|
|
|
|
|
|
#
|
|
|
|
|
|
# 🎯 实验目标:
|
|
|
|
|
|
# 基于实验1.4.9,实现四损失系统:CE + Balance + Similarity + Diversity
|
|
|
|
|
|
# 核心创新:Gumbel-Softmax选择机制 + 可微分相似度损失 + 候选集多样性约束
|
|
|
|
|
|
#
|
|
|
|
|
|
# 使用方法:
|
|
|
|
|
|
# bash run_file/experiment_1_4_10.sh
|
|
|
|
|
|
# ============================================================================
|
|
|
|
|
|
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
# 🧑🔬 实验基本信息
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
EXPERIMENT_VERSION="1.4.10"
|
|
|
|
|
|
EXPERIMENT_DESCRIPTION="四损失系统实验 - Gumbel-Softmax + 可微分相似度损失 + 多样性约束"
|
|
|
|
|
|
RESEARCHER_NAME="AI Assistant"
|
|
|
|
|
|
EXPERIMENT_DATE="$(date '+%Y-%m-%d %H:%M:%S')"
|
|
|
|
|
|
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
# 🤖 环境配置
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
# 调试和监控环境变量
|
|
|
|
|
|
export NCCL_DEBUG=INFO
|
|
|
|
|
|
export PYTHONFAULTHANDLER=1
|
|
|
|
|
|
export CUDA_LAUNCH_BLOCKING=1
|
|
|
|
|
|
|
|
|
|
|
|
# SwanLab 配置
|
|
|
|
|
|
export SWANLAB_PROJECT="MiniMind-Experiment-1.4.10"
|
|
|
|
|
|
|
|
|
|
|
|
# 日志配置
|
|
|
|
|
|
LOG_DIR="out/experiment_${EXPERIMENT_VERSION}"
|
|
|
|
|
|
mkdir -p "$LOG_DIR"
|
|
|
|
|
|
LOG_FILE="$LOG_DIR/experiment.log"
|
|
|
|
|
|
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
# 🤖 硬件配置
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
2025-09-06 16:17:22 +08:00
|
|
|
|
CUDA_VISIBLE_DEVICES="0,1"
|
|
|
|
|
|
NUM_PROCESSES="2"
|
2025-09-06 12:12:08 +08:00
|
|
|
|
MIXED_PRECISION="bf16"
|
|
|
|
|
|
MAIN_PROCESS_PORT="29500"
|
|
|
|
|
|
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
# 🤖 模型架构参数
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
MODEL_TYPE="model_memory" # 🔥 使用Token-based Memory模型
|
|
|
|
|
|
MODEL_SIZE="50.0"
|
|
|
|
|
|
DIM="512"
|
|
|
|
|
|
N_LAYERS="16"
|
|
|
|
|
|
N_HEADS="32"
|
|
|
|
|
|
MAX_SEQ_LEN="512"
|
|
|
|
|
|
USE_MOE="false"
|
|
|
|
|
|
|
|
|
|
|
|
# 🔥 知识库配置(四损失系统优化)
|
|
|
|
|
|
KNOWLEDGE_NUM="1048576" # 1M entries
|
|
|
|
|
|
KNOWLEDGE_LENGTH="8" # 🔥 增加到32个token提升表达能力
|
|
|
|
|
|
KNOWLEDGE_DIM="128" # 保留兼容性
|
|
|
|
|
|
DISABLE_DB="false"
|
|
|
|
|
|
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
# 🤖 训练超参数
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
EPOCHS="3"
|
2025-09-06 16:17:22 +08:00
|
|
|
|
EMBEDDING_EPOCH="2"
|
|
|
|
|
|
BATCH_SIZE="42" # 🔥 降低批次大小以适应更复杂的计算
|
|
|
|
|
|
ACCUMULATION_STEPS="8" # 🔥 增加累积步数保持有效批次大小
|
2025-09-06 12:12:08 +08:00
|
|
|
|
LEARNING_RATE="2e-4" # 🔥 适度降低学习率提升稳定性
|
|
|
|
|
|
DTYPE="bfloat16"
|
|
|
|
|
|
GRAD_CLIP="1.0"
|
|
|
|
|
|
WARMUP_ITERS="0"
|
|
|
|
|
|
|
|
|
|
|
|
# 🔥 四损失系统配置
|
|
|
|
|
|
BALANCE_LOSS_COEF="0.01" # 平衡损失系数
|
|
|
|
|
|
SIMILARITY_LOSS_COEF="0.15" # 🔥 相似度损失系数(核心损失)
|
|
|
|
|
|
DIVERSITY_LOSS_COEF="0.08" # 🔥 多样性损失系数(避免候选重复)
|
|
|
|
|
|
|
|
|
|
|
|
# 数据和缓存路径
|
2025-09-06 16:17:22 +08:00
|
|
|
|
DATA_PATH="dataset/stable/merged_pretrain.jsonl"
|
|
|
|
|
|
DATABASE_INIT_PATH="dataset/stable/sentence_trex_data.json"
|
2025-09-06 12:12:08 +08:00
|
|
|
|
CLUSTER_CACHE_PATH="None" # 禁用聚类缓存
|
|
|
|
|
|
VAL_DATA_PATH="dataset/stable/eval_data.json"
|
|
|
|
|
|
|
|
|
|
|
|
# 训练配置
|
2025-09-06 15:12:05 +08:00
|
|
|
|
NUM_WORKERS="8"
|
2025-09-06 12:12:08 +08:00
|
|
|
|
LOG_INTERVAL="100" # 🔥 更频繁的日志记录观察四个损失
|
|
|
|
|
|
VAL_INTERVAL="100"
|
|
|
|
|
|
SAVE_INTERVAL="10000"
|
|
|
|
|
|
|
|
|
|
|
|
# 性能分析配置
|
|
|
|
|
|
USE_PROFILE="true"
|
|
|
|
|
|
PROFILE_INTERVAL="10"
|
|
|
|
|
|
MEMORY_MONITOR_INTERVAL="100"
|
|
|
|
|
|
|
|
|
|
|
|
# 高级功能
|
|
|
|
|
|
USE_FLASH_ATTN="true"
|
|
|
|
|
|
FAST_CLUSTERING="true"
|
|
|
|
|
|
|
|
|
|
|
|
# 冻结率
|
|
|
|
|
|
FREEZE_RATIO="0.2"
|
|
|
|
|
|
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
# 🤖 预检查函数
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
check_environment() {
|
|
|
|
|
|
echo "🔍 环境检查中..."
|
|
|
|
|
|
|
|
|
|
|
|
# 检查GPU可用性
|
|
|
|
|
|
if ! nvidia-smi &> /dev/null; then
|
|
|
|
|
|
echo "❌ 错误: 未检测到GPU或nvidia-smi不可用"
|
|
|
|
|
|
exit 1
|
|
|
|
|
|
fi
|
|
|
|
|
|
|
|
|
|
|
|
# 检查CUDA设备
|
|
|
|
|
|
if ! nvidia-smi -i "$CUDA_VISIBLE_DEVICES" &> /dev/null; then
|
|
|
|
|
|
echo "❌ 错误: GPU $CUDA_VISIBLE_DEVICES 不可用"
|
|
|
|
|
|
exit 1
|
|
|
|
|
|
fi
|
|
|
|
|
|
|
|
|
|
|
|
# 检查数据文件
|
|
|
|
|
|
if [[ ! -f "$DATA_PATH" ]]; then
|
|
|
|
|
|
echo "❌ 错误: 训练数据文件不存在: $DATA_PATH"
|
|
|
|
|
|
exit 1
|
|
|
|
|
|
fi
|
|
|
|
|
|
|
|
|
|
|
|
if [[ ! -f "$DATABASE_INIT_PATH" ]]; then
|
|
|
|
|
|
echo "❌ 错误: 数据库初始化文件不存在: $DATABASE_INIT_PATH"
|
|
|
|
|
|
exit 1
|
|
|
|
|
|
fi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
echo "✅ 环境检查通过"
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
# 🤖 实验信息记录
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
log_experiment_info() {
|
|
|
|
|
|
echo "📝 记录实验信息..."
|
|
|
|
|
|
cat > "$LOG_DIR/experiment_info.txt" << EOF
|
|
|
|
|
|
========================================
|
|
|
|
|
|
MiniMind 实验信息
|
|
|
|
|
|
========================================
|
|
|
|
|
|
实验版本: $EXPERIMENT_VERSION
|
|
|
|
|
|
实验描述: $EXPERIMENT_DESCRIPTION
|
|
|
|
|
|
研究者: $RESEARCHER_NAME
|
|
|
|
|
|
开始时间: $EXPERIMENT_DATE
|
|
|
|
|
|
========================================
|
|
|
|
|
|
硬件配置:
|
|
|
|
|
|
GPU设备: $CUDA_VISIBLE_DEVICES
|
|
|
|
|
|
进程数: $NUM_PROCESSES
|
|
|
|
|
|
混合精度: $MIXED_PRECISION
|
|
|
|
|
|
========================================
|
|
|
|
|
|
模型配置:
|
|
|
|
|
|
模型类型: $MODEL_TYPE (Token-based Memory + 四损失系统)
|
|
|
|
|
|
模型大小: $MODEL_SIZE MB
|
|
|
|
|
|
维度: $DIM
|
|
|
|
|
|
层数: $N_LAYERS
|
|
|
|
|
|
注意力头数: $N_HEADS
|
|
|
|
|
|
最大序列长度: $MAX_SEQ_LEN
|
|
|
|
|
|
知识库大小: $KNOWLEDGE_NUM (1M entries)
|
|
|
|
|
|
知识长度: $KNOWLEDGE_LENGTH (增强表达能力)
|
|
|
|
|
|
知识维度: $KNOWLEDGE_DIM (兼容性保留)
|
|
|
|
|
|
========================================
|
|
|
|
|
|
训练配置:
|
|
|
|
|
|
训练轮次: $EPOCHS
|
|
|
|
|
|
批次大小: $BATCH_SIZE (优化显存使用)
|
|
|
|
|
|
学习率: $LEARNING_RATE (稳定性优化)
|
|
|
|
|
|
梯度累积: $ACCUMULATION_STEPS (保持有效批次)
|
|
|
|
|
|
数据类型: $DTYPE
|
|
|
|
|
|
========================================
|
|
|
|
|
|
🔥 四损失系统配置:
|
|
|
|
|
|
平衡损失系数: $BALANCE_LOSS_COEF (记忆选择平衡)
|
|
|
|
|
|
相似度损失系数: $SIMILARITY_LOSS_COEF (语义匹配优化)
|
|
|
|
|
|
多样性损失系数: $DIVERSITY_LOSS_COEF (候选集多样性)
|
|
|
|
|
|
========================================
|
|
|
|
|
|
🔥 Gumbel-Softmax配置:
|
|
|
|
|
|
候选项数量: 32 (Product Key生成)
|
|
|
|
|
|
选择数量: 1 (Gumbel-Softmax选择最佳)
|
|
|
|
|
|
温度参数: 1.0 (平衡探索与利用)
|
|
|
|
|
|
选择机制: 硬选择 + Straight-Through Estimator
|
|
|
|
|
|
========================================
|
|
|
|
|
|
🔥 核心创新对比:
|
|
|
|
|
|
传统方法: 16个记忆平均融合 (缺乏语义针对性)
|
|
|
|
|
|
新方法: 32候选→1最佳 (语义相似度驱动)
|
|
|
|
|
|
旧相似度损失: no_grad计算 (不可微分)
|
|
|
|
|
|
新相似度损失: 可微分优化 (直接指导学习)
|
|
|
|
|
|
新增多样性: 候选集内部差异性约束
|
|
|
|
|
|
========================================
|
|
|
|
|
|
数据路径:
|
|
|
|
|
|
训练数据: $DATA_PATH
|
|
|
|
|
|
验证数据: $VAL_DATA_PATH
|
|
|
|
|
|
数据库初始化: $DATABASE_INIT_PATH
|
|
|
|
|
|
聚类缓存: $CLUSTER_CACHE_PATH
|
|
|
|
|
|
========================================
|
|
|
|
|
|
预期改进:
|
|
|
|
|
|
1. 相似度损失收敛: 从震荡→稳定下降
|
|
|
|
|
|
2. 记忆选择质量: 更精准的语义匹配
|
|
|
|
|
|
3. 生成文本质量: 更好的连贯性和相关性
|
|
|
|
|
|
4. 四损失平衡: CE主导,其他损失辅助
|
|
|
|
|
|
========================================
|
|
|
|
|
|
EOF
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
# 🤖 主执行函数
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
run_experiment() {
|
|
|
|
|
|
echo "🚀 开始执行实验 $EXPERIMENT_VERSION"
|
|
|
|
|
|
echo "📄 实验描述: $EXPERIMENT_DESCRIPTION"
|
|
|
|
|
|
echo "⏰ 开始时间: $EXPERIMENT_DATE"
|
|
|
|
|
|
|
|
|
|
|
|
# 构建训练命令
|
2025-09-06 15:12:05 +08:00
|
|
|
|
local train_cmd="CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES accelerate launch --config_file accelerate_config.yaml train_pretrain_accelerate.py"
|
2025-09-06 12:12:08 +08:00
|
|
|
|
|
|
|
|
|
|
# 添加训练参数
|
|
|
|
|
|
train_cmd+=" --out_dir \"$LOG_DIR\""
|
|
|
|
|
|
train_cmd+=" --epochs $EPOCHS"
|
|
|
|
|
|
train_cmd+=" --embedding_epoch $EMBEDDING_EPOCH"
|
|
|
|
|
|
train_cmd+=" --batch_size $BATCH_SIZE"
|
|
|
|
|
|
train_cmd+=" --learning_rate $LEARNING_RATE"
|
|
|
|
|
|
train_cmd+=" --dtype $DTYPE"
|
|
|
|
|
|
train_cmd+=" --num_workers $NUM_WORKERS"
|
|
|
|
|
|
train_cmd+=" --accumulation_steps $ACCUMULATION_STEPS"
|
|
|
|
|
|
train_cmd+=" --grad_clip $GRAD_CLIP"
|
|
|
|
|
|
train_cmd+=" --warmup_iters $WARMUP_ITERS"
|
|
|
|
|
|
train_cmd+=" --log_interval $LOG_INTERVAL"
|
|
|
|
|
|
train_cmd+=" --val_interval $VAL_INTERVAL"
|
|
|
|
|
|
train_cmd+=" --save_interval $SAVE_INTERVAL"
|
|
|
|
|
|
train_cmd+=" --dim $DIM"
|
|
|
|
|
|
train_cmd+=" --n_layers $N_LAYERS"
|
|
|
|
|
|
train_cmd+=" --n_heads $N_HEADS"
|
|
|
|
|
|
train_cmd+=" --max_seq_len $MAX_SEQ_LEN"
|
|
|
|
|
|
train_cmd+=" --data_path \"$DATA_PATH\""
|
|
|
|
|
|
train_cmd+=" --val_data_path \"$VAL_DATA_PATH\""
|
|
|
|
|
|
train_cmd+=" --knowledge_num $KNOWLEDGE_NUM"
|
|
|
|
|
|
train_cmd+=" --knowledge_length $KNOWLEDGE_LENGTH"
|
|
|
|
|
|
train_cmd+=" --database_init_path \"$DATABASE_INIT_PATH\""
|
|
|
|
|
|
train_cmd+=" --memory_monitor_interval $MEMORY_MONITOR_INTERVAL"
|
|
|
|
|
|
train_cmd+=" --model_type \"$MODEL_TYPE\""
|
|
|
|
|
|
train_cmd+=" --model_size $MODEL_SIZE"
|
|
|
|
|
|
train_cmd+=" --freeze_ratio $FREEZE_RATIO"
|
|
|
|
|
|
|
|
|
|
|
|
# 🔥 四损失系统参数
|
|
|
|
|
|
train_cmd+=" --balance_loss_coef $BALANCE_LOSS_COEF"
|
|
|
|
|
|
train_cmd+=" --similarity_loss_coef $SIMILARITY_LOSS_COEF"
|
|
|
|
|
|
train_cmd+=" --diversity_loss_coef $DIVERSITY_LOSS_COEF"
|
|
|
|
|
|
|
|
|
|
|
|
# 可选参数
|
|
|
|
|
|
if [[ "$USE_PROFILE" == "true" ]]; then
|
|
|
|
|
|
train_cmd+=" --profile"
|
|
|
|
|
|
train_cmd+=" --profile_interval $PROFILE_INTERVAL"
|
|
|
|
|
|
fi
|
|
|
|
|
|
|
|
|
|
|
|
if [[ "$USE_FLASH_ATTN" == "true" ]]; then
|
|
|
|
|
|
train_cmd+=" --use_flash_attn"
|
|
|
|
|
|
fi
|
|
|
|
|
|
|
|
|
|
|
|
if [[ "$FAST_CLUSTERING" == "true" ]]; then
|
|
|
|
|
|
train_cmd+=" --fast_clustering"
|
|
|
|
|
|
fi
|
|
|
|
|
|
|
|
|
|
|
|
if [[ "$CLUSTER_CACHE_PATH" != "None" ]]; then
|
|
|
|
|
|
train_cmd+=" --cluster_cache_path \"$CLUSTER_CACHE_PATH\""
|
|
|
|
|
|
fi
|
|
|
|
|
|
|
|
|
|
|
|
# SwanLab配置
|
|
|
|
|
|
train_cmd+=" --use_swanlab"
|
|
|
|
|
|
train_cmd+=" --swanlab_project \"$SWANLAB_PROJECT\""
|
|
|
|
|
|
# train_cmd+=" --swanlab_online True"
|
|
|
|
|
|
|
|
|
|
|
|
echo "📋 执行命令:"
|
|
|
|
|
|
echo "$train_cmd"
|
|
|
|
|
|
echo
|
|
|
|
|
|
|
|
|
|
|
|
# 记录命令到日志文件
|
|
|
|
|
|
echo "执行命令: $train_cmd" >> "$LOG_FILE"
|
|
|
|
|
|
echo "开始时间: $(date)" >> "$LOG_FILE"
|
|
|
|
|
|
|
|
|
|
|
|
# 使用nohup执行训练(后台运行,输出写入日志文件)
|
|
|
|
|
|
echo "🔄 使用nohup后台运行训练,输出将写入日志文件: $LOG_FILE"
|
|
|
|
|
|
|
|
|
|
|
|
# 创建训练脚本
|
|
|
|
|
|
train_script="/tmp/train_${EXPERIMENT_VERSION}.sh"
|
|
|
|
|
|
cat > "$train_script" << EOF
|
|
|
|
|
|
#!/bin/bash
|
|
|
|
|
|
# cd /home/pci/nas/AI_Large_Model_Team/ycz/Minimind
|
|
|
|
|
|
# source .venv/bin/activate
|
|
|
|
|
|
$train_cmd
|
|
|
|
|
|
echo "结束时间: \$(date)"
|
|
|
|
|
|
echo "退出代码: \$?"
|
|
|
|
|
|
EOF
|
|
|
|
|
|
chmod +x "$train_script"
|
|
|
|
|
|
|
|
|
|
|
|
# 使用nohup后台运行
|
|
|
|
|
|
nohup bash "$train_script" >> "$LOG_FILE" 2>&1 &
|
|
|
|
|
|
local train_pid=$!
|
|
|
|
|
|
|
|
|
|
|
|
echo "🔥 训练进程已启动,PID: $train_pid"
|
|
|
|
|
|
echo "训练PID: $train_pid" >> "$LOG_FILE"
|
|
|
|
|
|
echo "训练脚本: $train_script" >> "$LOG_FILE"
|
|
|
|
|
|
|
|
|
|
|
|
# 等待几秒确保进程启动
|
|
|
|
|
|
sleep 5
|
|
|
|
|
|
|
|
|
|
|
|
# 检查进程是否还在运行
|
|
|
|
|
|
if kill -0 $train_pid 2>/dev/null; then
|
|
|
|
|
|
echo "✅ 训练进程正在后台运行"
|
|
|
|
|
|
echo "📋 实时查看日志: tail -f $LOG_FILE"
|
|
|
|
|
|
echo "📋 检查进程状态: ps -p $train_pid"
|
|
|
|
|
|
echo "🛑 停止训练: kill $train_pid"
|
|
|
|
|
|
echo "📈 SwanLab: https://swanlab.cn/project/$SWANLAB_PROJECT"
|
|
|
|
|
|
echo ""
|
|
|
|
|
|
echo "🧠 四损失系统机制正在测试中..."
|
|
|
|
|
|
echo " 🔥 损失结构: CE + Balance + Similarity + Diversity"
|
|
|
|
|
|
echo " 🔥 候选机制: 32个候选 → Gumbel-Softmax选择1个最佳"
|
|
|
|
|
|
echo " 🔥 相似度损失: 可微分优化 (修复震荡问题)"
|
|
|
|
|
|
echo " 🔥 多样性约束: 候选集内部差异性正则化"
|
|
|
|
|
|
echo " 🔥 选择策略: 语义相似度驱动 vs 随机平均"
|
|
|
|
|
|
echo ""
|
|
|
|
|
|
echo "📊 与实验1.4.9对比:"
|
|
|
|
|
|
echo " - 选择机制: 平均融合 → 最优选择"
|
|
|
|
|
|
echo " - 相似度损失: 不可微分 → 可微分"
|
|
|
|
|
|
echo " - 候选多样性: 无约束 → 多样性正则化"
|
|
|
|
|
|
echo " - 损失系统: 三损失 → 四损失平衡"
|
|
|
|
|
|
echo ""
|
|
|
|
|
|
echo "训练正在后台运行,可以安全关闭终端。"
|
|
|
|
|
|
echo ""
|
|
|
|
|
|
echo "🎯 预期改进:"
|
|
|
|
|
|
echo " - 相似度损失: 稳定收敛 (不再震荡)"
|
|
|
|
|
|
echo " - CE Loss: < 0.8 (改善语言建模)"
|
|
|
|
|
|
echo " - 生成质量: 更连贯的文本输出"
|
|
|
|
|
|
echo " - 记忆选择: 更精准的语义匹配"
|
|
|
|
|
|
echo ""
|
|
|
|
|
|
echo "⏱️ 预计训练时间: 18-22小时 (额外计算开销)"
|
|
|
|
|
|
echo "📊 预计GPU占用: ~24GB (Gumbel-Softmax + 多样性计算)"
|
|
|
|
|
|
echo ""
|
|
|
|
|
|
echo "🔍 关键监控指标:"
|
|
|
|
|
|
echo " - Similarity Loss: 期望从1.9震荡→稳定下降"
|
|
|
|
|
|
echo " - Diversity Loss: 保持适中值避免过度惩罚"
|
|
|
|
|
|
echo " - Selection Entropy: 监控选择多样性"
|
|
|
|
|
|
echo " - Selected Similarity: 观察选中记忆的相似度"
|
|
|
|
|
|
echo ""
|
|
|
|
|
|
else
|
|
|
|
|
|
echo "❌ 训练进程启动失败"
|
|
|
|
|
|
echo "📋 查看日志: $LOG_FILE"
|
|
|
|
|
|
exit 1
|
|
|
|
|
|
fi
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
# 🤖 清理函数
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
cleanup() {
|
|
|
|
|
|
echo "🧹 清理临时文件..."
|
|
|
|
|
|
# 删除临时验证文件
|
|
|
|
|
|
rm -f /tmp/temp_val.jsonl
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
# 🤖 信号处理
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
trap cleanup EXIT
|
|
|
|
|
|
trap 'echo "❌ 实验被中断"; cleanup; exit 130' INT TERM
|
|
|
|
|
|
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
# 🤖 主程序入口
|
|
|
|
|
|
# ----------------------------------------------------------------------------
|
|
|
|
|
|
main() {
|
|
|
|
|
|
echo "============================================================================"
|
|
|
|
|
|
echo "🧠 MiniMind 预训练实验 1.4.10"
|
|
|
|
|
|
echo "🎯 四损失系统 - Gumbel-Softmax + 可微分相似度损失 + 多样性约束"
|
|
|
|
|
|
echo "============================================================================"
|
|
|
|
|
|
echo ""
|
|
|
|
|
|
echo "🔥 核心创新:"
|
|
|
|
|
|
echo " ► 四损失架构: CE + Balance + Similarity + Diversity"
|
|
|
|
|
|
echo " ► Gumbel-Softmax: 32候选→1最佳 (可微分离散选择)"
|
|
|
|
|
|
echo " ► 相似度损失: 可微分优化 (修复震荡)"
|
|
|
|
|
|
echo " ► 多样性约束: 候选集内部差异性正则化"
|
|
|
|
|
|
echo " ► 语义选择: 相似度驱动 vs 平均融合"
|
|
|
|
|
|
echo ""
|
|
|
|
|
|
echo "🎯 实验假设:"
|
|
|
|
|
|
echo " ✓ 可微分相似度损失解决震荡问题"
|
|
|
|
|
|
echo " ✓ 语义驱动选择改善记忆利用质量"
|
|
|
|
|
|
echo " ✓ 多样性约束防止候选集退化"
|
|
|
|
|
|
echo " ✓ 四损失平衡提升整体模型性能"
|
|
|
|
|
|
echo ""
|
|
|
|
|
|
echo "🔧 关键技术细节:"
|
|
|
|
|
|
echo " ► Straight-Through Estimator确保梯度流"
|
|
|
|
|
|
echo " ► 候选集多样性通过余弦相似度矩阵计算"
|
|
|
|
|
|
echo " ► Gumbel噪声增强选择随机性"
|
|
|
|
|
|
echo " ► 硬选择保持离散性,软梯度保持可微性"
|
|
|
|
|
|
echo ""
|
|
|
|
|
|
echo "============================================================================"
|
|
|
|
|
|
|
|
|
|
|
|
# 执行检查和初始化
|
|
|
|
|
|
check_environment
|
|
|
|
|
|
log_experiment_info
|
|
|
|
|
|
|
|
|
|
|
|
# 运行实验
|
|
|
|
|
|
run_experiment
|
|
|
|
|
|
|
|
|
|
|
|
echo "============================================================================"
|
|
|
|
|
|
echo "✅ 实验 $EXPERIMENT_VERSION 启动完成"
|
|
|
|
|
|
echo "📅 启动时间: $(date)"
|
|
|
|
|
|
echo "============================================================================"
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
# 执行主程序
|
|
|
|
|
|
main "$@"
|