2024-09-01 23:45:48 +08:00
|
|
|
|
import json
|
|
|
|
|
import streamlit as st
|
|
|
|
|
import torch
|
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
from transformers.generation.utils import GenerationConfig
|
|
|
|
|
|
2024-09-15 15:12:47 +08:00
|
|
|
|
st.set_page_config(page_title="MiniMind-V1 108M(无历史上文)")
|
|
|
|
|
st.title("MiniMind-V1 108M(无历史上文)")
|
2024-09-01 23:45:48 +08:00
|
|
|
|
|
|
|
|
|
model_id = "minimind-v1"
|
|
|
|
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
temperature = 0.7
|
|
|
|
|
top_k = 8
|
|
|
|
|
max_seq_len = 1 * 1024
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
@st.cache_resource
|
|
|
|
|
def load_model_tokenizer():
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
|
model_id,
|
|
|
|
|
trust_remote_code=True
|
|
|
|
|
)
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
model_id,
|
|
|
|
|
use_fast=False,
|
|
|
|
|
trust_remote_code=True
|
|
|
|
|
)
|
|
|
|
|
model = model.eval()
|
|
|
|
|
generation_config = GenerationConfig.from_pretrained(model_id)
|
|
|
|
|
return model, tokenizer, generation_config
|
|
|
|
|
|
|
|
|
|
def clear_chat_messages():
|
|
|
|
|
del st.session_state.messages
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_chat_messages():
|
|
|
|
|
with st.chat_message("assistant", avatar='🤖'):
|
|
|
|
|
st.markdown("您好,我是由Joya开发的MiniMind,很高兴为您服务😄")
|
|
|
|
|
|
|
|
|
|
if "messages" in st.session_state:
|
|
|
|
|
for message in st.session_state.messages:
|
|
|
|
|
avatar = "🧑💻" if message["role"] == "user" else "🤖"
|
|
|
|
|
with st.chat_message(message["role"], avatar=avatar):
|
|
|
|
|
st.markdown(message["content"])
|
|
|
|
|
else:
|
|
|
|
|
st.session_state.messages = []
|
|
|
|
|
|
|
|
|
|
return st.session_state.messages
|
|
|
|
|
|
|
|
|
|
# max_new_tokens = st.sidebar.slider("max_new_tokens", 0, 1024, 512, step=1)
|
|
|
|
|
# top_p = st.sidebar.slider("top_p", 0.0, 1.0, 0.8, step=0.01)
|
|
|
|
|
# top_k = st.sidebar.slider("top_k", 0, 100, 0, step=1)
|
|
|
|
|
# temperature = st.sidebar.slider("temperature", 0.0, 2.0, 1.0, step=0.01)
|
|
|
|
|
# do_sample = st.sidebar.checkbox("do_sample", value=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
model, tokenizer, generation_config = load_model_tokenizer()
|
|
|
|
|
messages = init_chat_messages()
|
|
|
|
|
|
|
|
|
|
if prompt := st.chat_input("Shift + Enter 换行, Enter 发送"):
|
|
|
|
|
with st.chat_message("user", avatar='🧑💻'):
|
|
|
|
|
st.markdown(prompt)
|
|
|
|
|
messages.append({"role": "user", "content": prompt})
|
|
|
|
|
with st.chat_message("assistant", avatar='🤖'):
|
|
|
|
|
placeholder = st.empty()
|
|
|
|
|
|
|
|
|
|
chat_messages = []
|
|
|
|
|
chat_messages.append({"role": "user", "content": prompt})
|
|
|
|
|
# print(messages)
|
|
|
|
|
new_prompt = tokenizer.apply_chat_template(
|
|
|
|
|
chat_messages,
|
|
|
|
|
tokenize=False,
|
|
|
|
|
add_generation_prompt=True
|
|
|
|
|
)[-(max_seq_len - 1):]
|
|
|
|
|
|
|
|
|
|
x = tokenizer(new_prompt).data['input_ids']
|
|
|
|
|
x = (torch.tensor(x, dtype=torch.long)[None, ...])
|
|
|
|
|
|
|
|
|
|
response = ''
|
|
|
|
|
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
res_y = model.generate(x, tokenizer.eos_token_id, max_new_tokens=max_seq_len, temperature=temperature,
|
|
|
|
|
top_k=top_k, stream=True)
|
|
|
|
|
try:
|
|
|
|
|
y = next(res_y)
|
|
|
|
|
except StopIteration:
|
|
|
|
|
return
|
|
|
|
|
|
|
|
|
|
history_idx = 0
|
|
|
|
|
while y != None:
|
|
|
|
|
answer = tokenizer.decode(y[0].tolist())
|
|
|
|
|
if answer and answer[-1] == '<EFBFBD>':
|
|
|
|
|
try:
|
|
|
|
|
y = next(res_y)
|
|
|
|
|
except:
|
|
|
|
|
break
|
|
|
|
|
continue
|
|
|
|
|
# print(answer)
|
|
|
|
|
if not len(answer):
|
|
|
|
|
try:
|
|
|
|
|
y = next(res_y)
|
|
|
|
|
except:
|
|
|
|
|
break
|
|
|
|
|
continue
|
|
|
|
|
placeholder.markdown(answer)
|
|
|
|
|
response = answer
|
|
|
|
|
try:
|
|
|
|
|
y = next(res_y)
|
|
|
|
|
except:
|
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
# if contain_history_chat:
|
|
|
|
|
# assistant_answer = answer.replace(new_prompt, "")
|
|
|
|
|
# messages.append({"role": "assistant", "content": assistant_answer})
|
|
|
|
|
|
|
|
|
|
messages.append({"role": "assistant", "content": response})
|
|
|
|
|
|
|
|
|
|
st.button("清空对话", on_click=clear_chat_messages)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
main()
|