2024-08-28 16:41:44 +08:00
|
|
|
|
import random
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
|
import json
|
|
|
|
|
from datasets import load_dataset
|
|
|
|
|
from tokenizers import (
|
|
|
|
|
decoders,
|
|
|
|
|
models,
|
|
|
|
|
normalizers,
|
|
|
|
|
pre_tokenizers,
|
|
|
|
|
processors,
|
|
|
|
|
trainers,
|
|
|
|
|
Tokenizer,
|
|
|
|
|
)
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
random.seed(42)
|
|
|
|
|
|
|
|
|
|
def train_tokenizer():
|
|
|
|
|
# 读取JSONL文件并提取文本数据
|
|
|
|
|
def read_texts_from_jsonl(file_path):
|
|
|
|
|
with open(file_path, 'r', encoding='utf-8') as f:
|
|
|
|
|
for line in f:
|
|
|
|
|
data = json.loads(line)
|
|
|
|
|
yield data['text']
|
|
|
|
|
|
|
|
|
|
data_path = './dataset/tokenizer_train.jsonl'
|
|
|
|
|
|
|
|
|
|
# 初始化tokenizer
|
|
|
|
|
tokenizer = Tokenizer(models.BPE())
|
|
|
|
|
tokenizer.pre_tokenizer = pre_tokenizers.ByteLevel(add_prefix_space=False)
|
|
|
|
|
|
|
|
|
|
# 定义特殊token
|
|
|
|
|
special_tokens = ["<unk>", "<s>", "</s>"]
|
|
|
|
|
|
|
|
|
|
# 设置训练器并添加特殊token
|
|
|
|
|
trainer = trainers.BpeTrainer(
|
|
|
|
|
vocab_size=6400,
|
|
|
|
|
special_tokens=special_tokens, # 确保这三个token被包含
|
|
|
|
|
show_progress=True,
|
|
|
|
|
initial_alphabet=pre_tokenizers.ByteLevel.alphabet()
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# 读取文本数据
|
|
|
|
|
texts = read_texts_from_jsonl(data_path)
|
|
|
|
|
|
|
|
|
|
# 训练tokenizer
|
|
|
|
|
tokenizer.train_from_iterator(texts, trainer=trainer)
|
|
|
|
|
|
|
|
|
|
# 设置解码器
|
|
|
|
|
tokenizer.decoder = decoders.ByteLevel()
|
|
|
|
|
|
|
|
|
|
# 检查特殊token的索引
|
|
|
|
|
assert tokenizer.token_to_id("<unk>") == 0
|
|
|
|
|
assert tokenizer.token_to_id("<s>") == 1
|
|
|
|
|
assert tokenizer.token_to_id("</s>") == 2
|
|
|
|
|
|
|
|
|
|
# 保存tokenizer
|
2024-09-15 15:12:47 +08:00
|
|
|
|
tokenizer_dir = "./model/minimind_tokenizer"
|
2024-08-28 16:41:44 +08:00
|
|
|
|
os.makedirs(tokenizer_dir, exist_ok=True)
|
|
|
|
|
tokenizer.save(os.path.join(tokenizer_dir, "tokenizer.json"))
|
2024-09-15 15:12:47 +08:00
|
|
|
|
tokenizer.model.save("./model/minimind_tokenizer")
|
2024-08-28 16:41:44 +08:00
|
|
|
|
|
|
|
|
|
# 手动创建配置文件
|
|
|
|
|
config = {
|
|
|
|
|
"add_bos_token": False,
|
|
|
|
|
"add_eos_token": False,
|
|
|
|
|
"add_prefix_space": True,
|
|
|
|
|
"added_tokens_decoder": {
|
|
|
|
|
"0": {
|
|
|
|
|
"content": "<unk>",
|
|
|
|
|
"lstrip": False,
|
|
|
|
|
"normalized": False,
|
|
|
|
|
"rstrip": False,
|
|
|
|
|
"single_word": False,
|
|
|
|
|
"special": True
|
|
|
|
|
},
|
|
|
|
|
"1": {
|
|
|
|
|
"content": "<s>",
|
|
|
|
|
"lstrip": False,
|
|
|
|
|
"normalized": False,
|
|
|
|
|
"rstrip": False,
|
|
|
|
|
"single_word": False,
|
|
|
|
|
"special": True
|
|
|
|
|
},
|
|
|
|
|
"2": {
|
|
|
|
|
"content": "</s>",
|
|
|
|
|
"lstrip": False,
|
|
|
|
|
"normalized": False,
|
|
|
|
|
"rstrip": False,
|
|
|
|
|
"single_word": False,
|
|
|
|
|
"special": True
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
"additional_special_tokens": [],
|
|
|
|
|
"bos_token": "<s>",
|
|
|
|
|
"clean_up_tokenization_spaces": False,
|
|
|
|
|
"eos_token": "</s>",
|
|
|
|
|
"legacy": True,
|
|
|
|
|
"model_max_length": 1000000000000000019884624838656,
|
|
|
|
|
"pad_token": None,
|
|
|
|
|
"sp_model_kwargs": {},
|
|
|
|
|
"spaces_between_special_tokens": False,
|
|
|
|
|
"tokenizer_class": "PreTrainedTokenizerFast",
|
|
|
|
|
"unk_token": "<unk>",
|
|
|
|
|
"use_default_system_prompt": False,
|
|
|
|
|
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set system_message = messages[0]['content'] %}{% endif %}{% if system_message is defined %}{{ system_message }}{% endif %}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<s>user\\n' + content + '</s>\\n<s>assistant\\n' }}{% elif message['role'] == 'assistant' %}{{ content + '</s>' + '\\n' }}{% endif %}{% endfor %}"
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
# 保存配置文件
|
|
|
|
|
with open(os.path.join(tokenizer_dir, "tokenizer_config.json"), "w", encoding="utf-8") as config_file:
|
|
|
|
|
json.dump(config, config_file, ensure_ascii=False, indent=4)
|
|
|
|
|
|
|
|
|
|
print("Tokenizer training completed and saved.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def eval_tokenizer():
|
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
|
|
|
|
# 加载预训练的tokenizer
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("./model/minimind_tokenizer")
|
|
|
|
|
|
|
|
|
|
messages = [
|
|
|
|
|
{"role": "system", "content": "你是一个优秀的聊天机器人,总是给我正确的回应!"},
|
|
|
|
|
{"role": "user", "content": '是椭圆形的'},
|
|
|
|
|
{"role": "assistant", "content": '456'},
|
|
|
|
|
{"role": "user", "content": '456'},
|
|
|
|
|
{"role": "assistant", "content": '789'}
|
|
|
|
|
]
|
|
|
|
|
new_prompt = tokenizer.apply_chat_template(
|
|
|
|
|
messages,
|
|
|
|
|
tokenize=False
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
print(new_prompt)
|
|
|
|
|
# 获取词汇表大小(不包括特殊符号)
|
|
|
|
|
print('tokenizer词表大小:', tokenizer.vocab_size)
|
|
|
|
|
|
|
|
|
|
# 获取实际词汇表长度(包括特殊符号)
|
|
|
|
|
actual_vocab_size = len(tokenizer)
|
|
|
|
|
print('qwen实际词表长度:', actual_vocab_size)
|
|
|
|
|
|
|
|
|
|
new_prompt = 'wenjie,椭圆和⚪的关系是什么呢?因为明天下午要带家人去下医院,所以申请上午在家办公,因为明天下午要带家人去下医院,所以申请上午在家办公,因为明天下午要带家人去下医院,所以申请上午在家办公,下午请半天假~@LWJWe '
|
|
|
|
|
print(new_prompt)
|
|
|
|
|
model_inputs = tokenizer(new_prompt)
|
|
|
|
|
|
|
|
|
|
print(model_inputs)
|
|
|
|
|
print('长度:', len(model_inputs['input_ids']))
|
|
|
|
|
|
|
|
|
|
input_ids_ = model_inputs['input_ids']
|
|
|
|
|
|
|
|
|
|
response = tokenizer.decode(input_ids_)
|
|
|
|
|
print(response, end='')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
# train_tokenizer()
|
|
|
|
|
eval_tokenizer()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
main()
|