Minimind/model/LMConfig.py

90 lines
4.4 KiB
Python
Raw Normal View History

2025-05-14 00:01:40 +08:00
from transformers import PretrainedConfig
from typing import List, Optional, Union
2025-05-14 00:01:40 +08:00
class LMConfig(PretrainedConfig):
model_type = "minimind"
def __init__(
self,
dim: int = 512,
n_layers: int = 8,
n_heads: int = 32,
n_kv_heads: int = 8,
vocab_size: int = 6400,
hidden_dim: Optional[int] = None,
2025-05-14 00:01:40 +08:00
multiple_of: int = 64,
norm_eps: float = 1e-5,
max_seq_len: int = 8192,
rope_theta: float = 1e6,
2025-05-14 00:01:40 +08:00
dropout: float = 0.0,
flash_attn: bool = True,
####################################################
# DB related configurations
####################################################
disable_db: bool = False, # 特殊模式:禁用数据库功能
use_direct_semantic: bool = False, # 是否使用直接语义匹配替代Product Key
realtime_steps: int = 2000, # 前多少步使用实时计算(后续使用渐进式缓存)
db_intelligent_balance: bool = True, # 是否启用智能负载均衡
db_relevance_threshold: float = 0.7, # 相关性阈值(第一层过滤)
db_balance_strength: float = 0.3, # 平衡权重的基础值
db_momentum: float = 0.9, # 使用频率统计的动量
db_adaptive_weights: bool = True, # 是否启用动态权重调整
2025-05-14 00:01:40 +08:00
####################################################
# Here are the specific configurations of MOE
# When use_moe is false, the following is invalid
####################################################
use_moe: bool = False,
####################################################
num_experts_per_tok: int = 2,
n_routed_experts: int = 4,
n_shared_experts: bool = True,
scoring_func: str = 'softmax',
aux_loss_alpha: float = 0.1,
seq_aux: bool = True,
norm_topk_prob: bool = True,
####################################################
2025-05-16 08:38:59 +00:00
knowledge_num: int = 64*64,
knowledge_length: int = 8,
2025-05-14 00:01:40 +08:00
**kwargs,
):
self.dim = dim
self.n_layers = n_layers
self.n_heads = n_heads
self.n_kv_heads = n_kv_heads
self.vocab_size = vocab_size
self.hidden_dim = hidden_dim
self.multiple_of = multiple_of
self.norm_eps = norm_eps
self.max_seq_len = max_seq_len
self.rope_theta = rope_theta
self.dropout = dropout
self.flash_attn = flash_attn
####################################################
# DB related configurations
####################################################
self.disable_db = disable_db # 设置是否禁用数据库
self.use_direct_semantic = use_direct_semantic # 是否使用直接语义匹配替代Product Key
self.realtime_steps = realtime_steps # 前多少步使用实时计算(后续使用渐进式缓存)
self.db_intelligent_balance = db_intelligent_balance # 是否启用智能负载均衡
self.db_relevance_threshold = db_relevance_threshold # 相关性阈值(第一层过滤)
self.db_balance_strength = db_balance_strength # 平衡权重的基础值
self.db_momentum = db_momentum # 使用频率统计的动量
self.db_adaptive_weights = db_adaptive_weights # 是否启用动态权重调整
2025-05-14 00:01:40 +08:00
####################################################
# Here are the specific configurations of MOE
# When use_moe is false, the following is invalid
####################################################
self.use_moe = use_moe
self.num_experts_per_tok = num_experts_per_tok # 每个token选择的专家数量
self.n_routed_experts = n_routed_experts # 总的专家数量
self.n_shared_experts = n_shared_experts # 共享专家
self.scoring_func = scoring_func # 评分函数,默认为'softmax'
self.aux_loss_alpha = aux_loss_alpha # 辅助损失的alpha参数
self.seq_aux = seq_aux # 是否在序列级别上计算辅助损失
self.norm_topk_prob = norm_topk_prob # 是否标准化top-k概率
####################################################
2025-05-16 08:38:59 +00:00
self.knowledge_num = knowledge_num
self.knowledge_length = knowledge_length
2025-05-14 00:01:40 +08:00
super().__init__(**kwargs)