The [Seq-Monkey General Text Dataset](https://github.com/mobvoi/seq-monkey-data/blob/main/docs/pretrain_open_corpus.md) / [Baidu](https://pan.baidu.com/s/114F1k3eksiWCOQLvaT3RYQ?pwd=6666)
| **[SFT Data]** | [Jiangshu Large Model SFT Dataset](https://www.modelscope.cn/datasets/deepctrl/deepctrl-sft-data/resolve/master/sft_data_zh.jsonl) |
[A]: Yes, the Yangtze River is the longest river in China, with a length of over 3,300 kilometers.
[B]: Yes, the Yangtze River is the longest river in China, with a length of about 7,100 kilometers. Its drainage area is about 33.28 million square kilometers, making it one of China's largest rivers and the third longest river in the world, with a total length of about 6,300 kilometers.
[C]: Yes, the Yangtze River is one of the longest rivers in China and the third longest river in the world. It originates from the Tibetan Plateau, flows through 11 provinces, and eventually empties into the East China Sea. The Yangtze River Basin is one of China's largest river basins, with abundant natural resources and cultural heritage, such as the Yangtze River Bridge, Yangtze River Maritime Museum, and ancient cities along the Yangtze.
[D]: I also know that China is one of the longest cities in the world, with a population of over 34 million people.
[E]: Yes, the Yangtze River is the longest river in China and also one of the longest rivers in the world. It originates from the Tibetan Plateau, flows through nine provinces and regions, and eventually empties into the East China Sea. The climate in the Yangtze River Basin is mild, with distinct seasons, making it an important agricultural and industrial base in China. The river basin is rich in aquatic resources and is one of China's major fishing resources.
[C]: The first artificial satellite was launched by the Soviet Union on October 4, 1957.
[D]: This satellite, named "Armstrong," was launched on November 20, 1961, and was the first successful satellite to send a human into space.
[E]: The first artificial satellite was launched by the Soviet Union on April 4, 1957. It was launched by Soviet astronaut Yuri Gagarin and Soviet engineer Roald Skohley. During the launch, Gagarin and Skohley used a small satellite named "Sputnik 1," which had a diameter of 4.3 meters and weighed 1,051 kilograms. This satellite, known as "Sputnik 1," marked a milestone in the Soviet space race and was the first instance of a human spacewalk in history.
[A]: Mount Tai is located in eastern China and is one of the Five Great Mountains of China.
[B]: Mount Tai is located in Tai'an City, Shandong Province, and is one of the Five Great Mountains of China.
[C]: Mount Tai is located in Tai'an City, Shandong Province, China, and is one of the Five Great Mountains of China.
[D]: As an AI assistant, I cannot access the internet, so I cannot provide information about your location. However, you can search for information or related keywords to find details about your location, or check news and websites for relevant information.
[E]: Mount Tai is located in Tai'an City, Shandong Province, China, and is one of the Five Great Mountains of China. It is also an important symbol of Chinese culture and history. With an elevation of 1,545 meters, it is one of the most famous tourist destinations in China. Its history dates back to the 5th century BC and was a site for ancient royal sacrifices. Mount Tai is a significant part of Chinese culture, known as the "First of the Five Great Mountains."
[A]: The highest mountain in the world is Mount Everest, located on the border between Nepal and China, with an elevation of 8,848 meters.
[B]: Mount Everest is the highest mountain in the world, located in the Himalayas, with an elevation of 8,848 meters.
[C]: Mount Everest is the highest mountain in the world, with an elevation of 8,848 meters.
[D]: The highest mountain in the world is Mount Everest, located in the Himalayas, with an elevation of 8,848.86 meters (29,031.69 feet).
[E]: The highest mountain in the world is Mount Everest, also known as Sagarmatha, located on the border between Nepal and China in the Himalayas, with an elevation of 8,848.86 meters (29,031.69 feet). It is one of the most famous climbing destinations, attracting climbers from around the world. The name Everest comes from Tibetan, meaning "The Goddess’s Peak," and it consists of two peaks, one in Nepal and one in China. Its height is determined through measurements of sea level, as it is the highest point on Earth. Although Everest is the highest mountain, it is not accessible from every place on Earth. Other places, such as the Andes Mountains in South America, are also high but do not have the highest peak. Overall, Everest is the highest mountain, but it is not accessible from every location on Earth.
[A]: The law of universal gravitation was proposed by the British physicist Newton. He believed that all objects exert gravitational force, which depends on their mass and distance. This theory reveals the relationship between mass and distance and explains the nature of gravitation.
[B]: The law of universal gravitation was discovered by Newton and proposed by the British physicist James Watt in 1879.
[C]: The law of universal gravitation was proposed by the British physicist Isaac Newton in the 17th century.
[D]: Gravitation is a force in the universe composed of mass or energy. According to Newton's law of universal gravitation, the force between two objects is proportional to their mass and inversely proportional to their distance. Thus, Newton's law of universal gravitation shows that the gravitational force between two objects is proportional to their mass and inversely proportional to their distance. This law has wide applications in physics, astronomy, and other fields.
[E]: The law of universal gravitation was proposed by the British physicist Isaac Newton in 1687. In his famous paper "Philosophiæ Naturalis Principia Mathematica," Newton proposed the law of universal gravitation, stating that any two objects exert a gravitational force on each other, proportional to their masses and inversely proportional to the square of their distance. This law is known as the law of universal gravitation and describes the relationship between mass and distance. It is crucial for explaining many phenomena in the universe, such as planetary orbits and gravitational lensing between stars, and has broad applications in astronomy, physics, and engineering, providing a fundamental theoretical basis for understanding the nature and evolution of the universe.
[A]: The main food of giant pandas is bamboo. They typically eat bamboo and need to consume about 30 kilograms of it each day.
[B]: Giant pandas mainly eat bamboo, which is their primary food. Their digestive system is quite specialized, and they need to digest a large amount of bamboo daily to meet their survival needs. Besides bamboo, giant pandas also survive in the wild.
[C]: Giant pandas mainly eat bamboo but occasionally consume other plants and animals. They also eat some wild fruits, small animals, and plants, but these are not their main food sources.
[D]: The main food of giant pandas is bamboo.
[E]: Giant pandas are herbivores that primarily eat bamboo. Their digestive system is adapted to process the high cellulose content of bamboo, but they also consume some other plants, such as herbaceous plants and small mammals. Their digestive system includes enzymes like "cellulase" to break down cellulose, helping them digest a large amount of fiber and nutrients. Additionally, they have "cellulose protein" that helps maintain their energy levels, aiding their survival in the wild. Overall, bamboo is their primary food, but they also eat other plants and small mammals.
[A]: Seawater contains many salts, which increase its salinity. The salts in seawater mainly come from the dissolved salts and form hydrogen bonds with water molecules, increasing the salinity.
[B]: Seawater contains abundant elements like calcium, phosphorus, potassium, and phosphorus, which are limited in quantity and distribution in the ocean. Additionally, seawater contains nutrients from various organisms and microorganisms, such as shells and seaweeds.
[C]: Seawater contains many dissolved salts, with the most common being sodium chloride. When salt is added to water, its molecules react with water molecules to form sodium hydroxide, which is a type of salt.
[D]: Water is essential for many organisms, as it can absorb and release carbon dioxide, release oxygen,
[E]: The primary reason seawater is salty is due to the high concentration of dissolved salts, with sodium chloride (NaCl) being the most significant. Sodium chloride is a very common salt that is present in most regions of the Earth, including oceans, lakes, rivers, and groundwater. When water evaporates from the ocean, it carries away some of the salt, making the seawater salty. Additionally, seawater contains other dissolved salts such as sulfates, magnesium sulfate, calcium sulfate, magnesium potassium sulfate, magnesium sodium sulfate, magnesium calcium sulfate, magnesium magnesium calcium sulfate, magnesium magnesium calcium sulfate, magnesium magnesium calcium sulfate, magnesium magnesium sodium sulfate, magnesium magnesium calcium sulfate, magnesium magnesium magnesium calcium sulfate, magnesium magnesium magnesium
* The ranking of the minimind series (ABC) aligns with intuition, with minimind-v1(0.1B) scoring the highest, and its responses to common sense questions are mostly error-free and free of hallucinations.
* Surprisingly, minimind-v1-small(0.02B), with only 26M parameters, can perform nearly as well as minimind-v1(0.1B).
* minimind-v1(0.1B) underwent less than 2 epochs of SFT (Supervised Fine-Tuning) due to being prematurely killed to free up resources for smaller models. Despite not being fully trained, it still achieved the best performance, demonstrating that larger models generally outperform smaller ones.
* minimind-v1-moe(0.1B) performed only slightly better than minimind-v1-small(0.02B), also due to early termination to free up resources for other training. However, the MoE (Mixture of Experts) model, with its sparse multi-Experts mode, requires more training epochs to fully activate and train all FFN (Feed-Forward Network) layer experts. In the current setup with 3 epochs, the training is not yet sufficient.
Early experiments with minimind on the Yi-Tokenizer showed that a fully trained MoE version could outperform dense small models visibly. This aspect may need to be reserved for future training and updates to v2 and v3 versions when more server resources are available.
* The responses from Model E appear to be quite good to the naked eye, although there are occasional instances of hallucinations and fabrications. However, both GPT-4o and Deepseek's evaluations consistently noted that it "provides overly verbose and repetitive information, and contains hallucinations."
This evaluation seems somewhat strict, as even a small number of hallucinated words in a 100-word response can easily result in a low score. Given that Model E was pre-trained on longer texts and a larger dataset, its responses appear more comprehensive. In models of similar size, both the quantity and quality of the data are crucial.
1.**High School Chemistry**: With an accuracy of 42.11%, this is the strongest area for the model, suggesting a solid grasp of chemistry-related knowledge.
2.**Discrete Mathematics**: Achieving an accuracy of 37.50%, the model performs well in mathematics-related fields.
3.**Education Science**: The model shows good performance in education-related topics with a 37.93% accuracy.
4.**Basic Medicine**: The accuracy of 36.84% indicates strong performance in foundational medical knowledge.
5.**Operating Systems**: With a 36.84% accuracy, the model demonstrates reliable performance in computer operating systems.
### Areas Where the Model Struggles:
1.**Legal Topics**: The model performs poorly in legal-related areas such as Legal Professional (8.70%) and Tax Accountant (20.41%).
2.**Physics**: Both high school (26.32%) and college-level (21.05%) physics topics are challenging for the model.
3.**High School Politics and Geography**: The model shows low accuracy in these areas, with High School Politics at 15.79% and High School Geography at 21.05%.
4.**Computer Networking and Architecture**: The model struggles with Computer Networking (21.05%) and Computer Architecture (9.52%).
5.**Environmental Impact Assessment Engineering**: The accuracy is only 12.90%, indicating weak performance in environmental science.
- **Weaknesses**: Legal Topics, Physics, Politics, Geography, Computer Networking and Architecture, and Environmental Science.
This suggests that the model performs well in logical reasoning, foundational sciences, and some engineering disciplines but is weaker in humanities, social sciences, and certain specialized fields (such as law and taxation). To improve the model's performance, additional training in humanities, physics, law, and environmental science may be beneficial.
```
# 📌 Others
### Inference and Export
* [./export_model.py](./export_model.py) can export the model to the transformers format and push it to Hugging Face.
> An individual's resources, energy, and time are limited, so we encourage everyone to participate and contribute collectively. If you have trained model weights, you are welcome to share them in the Discussions or Issues sections.<br/>
> These models can be new versions of MiniMind tailored for specific downstream tasks or vertical domains (such as sentiment recognition, healthcare, psychology, finance, legal Q&A, etc.).<br/>
> They can also be new versions of MiniMind models that have undergone extended training, exploring longer text sequences, larger volumes (such as 0.1B+), or more extensive datasets.<br/>
> Each contribution is unique, and all attempts are valuable and encouraged.<br/>
> Any shared contributions will be promptly recognized and compiled in the acknowledgments list. Thank you once again for everyone's support!