Minimind/run_file/experiment_template.sh

359 lines
14 KiB
Bash
Raw Normal View History

2025-08-01 15:54:21 +08:00
#!/bin/bash
# ============================================================================
# MiniMind 实验脚本模版 - Experiment [VERSION]
# ============================================================================
#
# 🎯 使用说明:
# - 🧑‍🔬 [人类填写] - 实验开始前由人类研究者配置
# - 🤖 [AI构建] - 实验构建过程中由AI自动替换占位符
#
# 使用方法:
# 1. 复制此模版为 experiment_X.X.X.sh
# 2. 替换所有 [PLACEHOLDER] 占位符
# 3. 执行: bash run_file/experiment_X.X.X.sh
# ============================================================================
# ----------------------------------------------------------------------------
# 🧑‍🔬 [人类填写] 实验基本信息
# ----------------------------------------------------------------------------
EXPERIMENT_VERSION="[VERSION]" # 实验版本号,如: 1.4.1
EXPERIMENT_DESCRIPTION="[DESCRIPTION]" # 实验简短描述
RESEARCHER_NAME="[RESEARCHER]" # 研究者姓名
EXPERIMENT_DATE="$(date '+%Y-%m-%d %H:%M:%S')" # 自动记录实验开始时间
# ----------------------------------------------------------------------------
# 🤖 [AI构建] 环境配置
# ----------------------------------------------------------------------------
# Python环境设置
# 注意: 根据实际环境选择激活方式
# Option 1: Conda环境 (如果使用conda)
# source $(conda info --base)/etc/profile.d/conda.sh
# conda activate [CONDA_ENV]
# Option 2: UV虚拟环境 (推荐)
# export VIRTUAL_ENV="[VENV_PATH]"
# source "$VIRTUAL_ENV/bin/activate"
# 调试和监控环境变量
export NCCL_DEBUG=INFO # NCCL 调试信息
export PYTHONFAULTHANDLER=1 # Python 故障处理
export CUDA_LAUNCH_BLOCKING=1 # CUDA 同步执行(调试用)
# SwanLab 配置
export SWANLAB_API_KEY="[SWANLAB_API_KEY]" # 🤖 [AI构建] SwanLab API密钥
export SWANLAB_PROJECT="[SWANLAB_PROJECT]" # 🤖 [AI构建] SwanLab项目名
# 日志配置
LOG_DIR="out/experiment_${EXPERIMENT_VERSION}"
mkdir -p "$LOG_DIR"
LOG_FILE="$LOG_DIR/experiment.log"
# ----------------------------------------------------------------------------
# 🤖 [AI构建] 硬件配置
# ----------------------------------------------------------------------------
CUDA_VISIBLE_DEVICES="[CUDA_DEVICES]" # GPU设备如: 0 或 0,1,2,3
NUM_PROCESSES="[NUM_PROCESSES]" # 进程数通常等于GPU数量
MIXED_PRECISION="[MIXED_PRECISION]" # 混合精度: bf16, fp16, no
MAIN_PROCESS_PORT="[MAIN_PROCESS_PORT]" # 主进程端口,默认: 29500
# ----------------------------------------------------------------------------
# 🤖 [AI构建] 模型架构参数
# ----------------------------------------------------------------------------
MODEL_TYPE="[MODEL_TYPE]" # 模型类型: model, model_original, model_no_feed
MODEL_SIZE="[MODEL_SIZE]" # 模型大小 (MB)
DIM="[DIM]" # 模型维度
N_LAYERS="[N_LAYERS]" # Transformer层数
N_HEADS="[N_HEADS]" # 注意力头数
MAX_SEQ_LEN="[MAX_SEQ_LEN]" # 最大序列长度
USE_MOE="[USE_MOE]" # 是否使用MOE: true/false
# 知识库配置
KNOWLEDGE_NUM="[KNOWLEDGE_NUM]" # 知识条目数量
KNOWLEDGE_LENGTH="[KNOWLEDGE_LENGTH]" # 单条知识长度
DISABLE_DB="[DISABLE_DB]" # 是否禁用数据库: true/false
# ----------------------------------------------------------------------------
# 🤖 [AI构建] 训练超参数
# ----------------------------------------------------------------------------
EPOCHS="[EPOCHS]" # 训练轮次
EMBEDDING_EPOCH="[EMBEDDING_EPOCH]" # 嵌入层训练轮次
BATCH_SIZE="[BATCH_SIZE]" # 批次大小
ACCUMULATION_STEPS="[ACCUMULATION_STEPS]" # 梯度累积步数
LEARNING_RATE="[LEARNING_RATE]" # 学习率
DTYPE="[DTYPE]" # 数据类型: bfloat16, float16, float32
GRAD_CLIP="[GRAD_CLIP]" # 梯度裁剪阈值
WARMUP_ITERS="[WARMUP_ITERS]" # 预热迭代数
# 数据和缓存路径
DATA_PATH="[DATA_PATH]" # 训练数据路径
DATABASE_INIT_PATH="[DATABASE_INIT_PATH]" # 数据库初始化路径
CLUSTER_CACHE_PATH="[CLUSTER_CACHE_PATH]" # 聚类缓存路径
# 训练配置
NUM_WORKERS="[NUM_WORKERS]" # 数据加载工作进程数
LOG_INTERVAL="[LOG_INTERVAL]" # 日志记录间隔
SAVE_INTERVAL="[SAVE_INTERVAL]" # 模型保存间隔
# 性能分析配置
USE_PROFILE="[USE_PROFILE]" # 是否启用性能分析: true/false
PROFILE_INTERVAL="[PROFILE_INTERVAL]" # 性能分析间隔
MEMORY_MONITOR_INTERVAL="[MEMORY_MONITOR_INTERVAL]" # 内存监控间隔
# 高级功能
USE_FLASH_ATTN="[USE_FLASH_ATTN]" # 是否使用Flash Attention: true/false
FAST_CLUSTERING="[FAST_CLUSTERING]" # 是否使用快速聚类: true/false
# ----------------------------------------------------------------------------
# 🤖 [AI构建] 预检查函数
# ----------------------------------------------------------------------------
check_environment() {
echo "🔍 环境检查中..."
# 检查GPU可用性
if ! nvidia-smi &> /dev/null; then
echo "❌ 错误: 未检测到GPU或nvidia-smi不可用"
exit 1
fi
# 检查CUDA设备
IFS=',' read -ra DEVICES <<< "$CUDA_VISIBLE_DEVICES"
for device in "${DEVICES[@]}"; do
if ! nvidia-smi -i "$device" &> /dev/null; then
echo "❌ 错误: GPU $device 不可用"
exit 1
fi
done
# 检查Python环境
if ! python -c "import torch; print(f'PyTorch: {torch.__version__}')" 2>/dev/null; then
echo "❌ 错误: PyTorch未正确安装"
exit 1
fi
# 检查数据文件
if [[ ! -f "$DATA_PATH" ]]; then
echo "❌ 错误: 训练数据文件不存在: $DATA_PATH"
exit 1
fi
if [[ "$DATABASE_INIT_PATH" != "None" && ! -f "$DATABASE_INIT_PATH" ]]; then
echo "❌ 错误: 数据库初始化文件不存在: $DATABASE_INIT_PATH"
exit 1
fi
echo "✅ 环境检查通过"
}
# ----------------------------------------------------------------------------
# 🤖 [AI构建] 实验信息记录
# ----------------------------------------------------------------------------
log_experiment_info() {
echo "📝 记录实验信息..."
cat > "$LOG_DIR/experiment_info.txt" << EOF
========================================
MiniMind 实验信息
========================================
实验版本: $EXPERIMENT_VERSION
实验描述: $EXPERIMENT_DESCRIPTION
研究者: $RESEARCHER_NAME
开始时间: $EXPERIMENT_DATE
========================================
硬件配置:
GPU设备: $CUDA_VISIBLE_DEVICES
进程数: $NUM_PROCESSES
混合精度: $MIXED_PRECISION
========================================
模型配置:
模型类型: $MODEL_TYPE
模型大小: $MODEL_SIZE MB
维度: $DIM
层数: $N_LAYERS
注意力头数: $N_HEADS
最大序列长度: $MAX_SEQ_LEN
使用MOE: $USE_MOE
========================================
训练配置:
训练轮次: $EPOCHS
批次大小: $BATCH_SIZE
学习率: $LEARNING_RATE
梯度累积: $ACCUMULATION_STEPS
数据类型: $DTYPE
========================================
数据路径:
训练数据: $DATA_PATH
数据库初始化: $DATABASE_INIT_PATH
聚类缓存: $CLUSTER_CACHE_PATH
========================================
EOF
}
# ----------------------------------------------------------------------------
# 🤖 [AI构建] 主执行函数
# ----------------------------------------------------------------------------
run_experiment() {
echo "🚀 开始执行实验 $EXPERIMENT_VERSION"
echo "📄 实验描述: $EXPERIMENT_DESCRIPTION"
echo "⏰ 开始时间: $EXPERIMENT_DATE"
# 构建accelerate命令
local accelerate_cmd="CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES"
# 根据是否使用uv选择执行方式
if command -v uv &> /dev/null && [[ -f "pyproject.toml" ]]; then
accelerate_cmd+=" uv run -p .venv python -m accelerate.commands.launch"
else
accelerate_cmd+=" accelerate launch"
fi
# 添加accelerate参数
if [[ "$NUM_PROCESSES" -gt 1 ]]; then
accelerate_cmd+=" --multi_gpu"
fi
accelerate_cmd+=" --num_processes=$NUM_PROCESSES"
accelerate_cmd+=" --mixed_precision=$MIXED_PRECISION"
accelerate_cmd+=" --main_process_port=$MAIN_PROCESS_PORT"
accelerate_cmd+=" train_pretrain_accelerate.py"
# 添加训练参数
accelerate_cmd+=" --out_dir \"$LOG_DIR\""
accelerate_cmd+=" --epochs $EPOCHS"
accelerate_cmd+=" --embedding_epoch $EMBEDDING_EPOCH"
accelerate_cmd+=" --batch_size $BATCH_SIZE"
accelerate_cmd+=" --learning_rate $LEARNING_RATE"
accelerate_cmd+=" --dtype $DTYPE"
accelerate_cmd+=" --num_workers $NUM_WORKERS"
accelerate_cmd+=" --accumulation_steps $ACCUMULATION_STEPS"
accelerate_cmd+=" --grad_clip $GRAD_CLIP"
accelerate_cmd+=" --warmup_iters $WARMUP_ITERS"
accelerate_cmd+=" --log_interval $LOG_INTERVAL"
accelerate_cmd+=" --save_interval $SAVE_INTERVAL"
accelerate_cmd+=" --dim $DIM"
accelerate_cmd+=" --n_layers $N_LAYERS"
accelerate_cmd+=" --n_heads $N_HEADS"
accelerate_cmd+=" --max_seq_len $MAX_SEQ_LEN"
accelerate_cmd+=" --data_path \"$DATA_PATH\""
accelerate_cmd+=" --knowledge_num $KNOWLEDGE_NUM"
accelerate_cmd+=" --knowledge_length $KNOWLEDGE_LENGTH"
accelerate_cmd+=" --database_init_path \"$DATABASE_INIT_PATH\""
accelerate_cmd+=" --memory_monitor_interval $MEMORY_MONITOR_INTERVAL"
accelerate_cmd+=" --model_type \"$MODEL_TYPE\""
accelerate_cmd+=" --model_size $MODEL_SIZE"
# 可选参数
if [[ "$USE_PROFILE" == "true" ]]; then
accelerate_cmd+=" --profile"
accelerate_cmd+=" --profile_interval $PROFILE_INTERVAL"
fi
if [[ "$USE_FLASH_ATTN" == "true" ]]; then
accelerate_cmd+=" --use_flash_attn"
fi
if [[ "$FAST_CLUSTERING" == "true" ]]; then
accelerate_cmd+=" --fast_clustering"
fi
if [[ "$DISABLE_DB" == "true" ]]; then
accelerate_cmd+=" --disable_db"
fi
if [[ "$CLUSTER_CACHE_PATH" != "None" ]]; then
accelerate_cmd+=" --cluster_cache_path \"$CLUSTER_CACHE_PATH\""
fi
# SwanLab配置
accelerate_cmd+=" --use_swanlab"
accelerate_cmd+=" --swanlab_project \"$SWANLAB_PROJECT\""
echo "📋 执行命令:"
echo "$accelerate_cmd"
echo
# 记录命令到日志文件
echo "执行命令: $accelerate_cmd" >> "$LOG_FILE"
echo "开始时间: $(date)" >> "$LOG_FILE"
# 使用nohup执行训练后台运行输出写入日志文件
echo "🔄 使用nohup后台运行训练输出将写入日志文件: $LOG_FILE"
echo "开始时间: $(date)" >> "$LOG_FILE"
# 创建训练脚本
train_script="/tmp/train_${EXPERIMENT_VERSION}.sh"
cat > "$train_script" << EOF
#!/bin/bash
cd /home/pci/ycz/Code/pretrain-worktree
source /home/pci/ycz/Code/pretrain-worktree/.venv/bin/activate
$accelerate_cmd
echo "结束时间: \$(date)"
echo "退出代码: \$?"
EOF
chmod +x "$train_script"
# 使用nohup后台运行
nohup bash "$train_script" >> "$LOG_FILE" 2>&1 &
local train_pid=$!
echo "🔥 训练进程已启动PID: $train_pid"
echo "训练PID: $train_pid" >> "$LOG_FILE"
echo "训练脚本: $train_script" >> "$LOG_FILE"
# 等待几秒确保进程启动
sleep 5
# 检查进程是否还在运行
if kill -0 $train_pid 2>/dev/null; then
echo "✅ 训练进程正在后台运行"
echo "📋 实时查看日志: tail -f $LOG_FILE"
echo "📋 检查进程状态: ps -p $train_pid"
echo "🛑 停止训练: kill $train_pid"
echo "⏰ 预计训练时间: 根据配置而定"
echo "📈 SwanLab: https://swanlab.cn/project/$SWANLAB_PROJECT"
echo ""
echo "训练正在后台运行,可以安全关闭终端。"
else
echo "❌ 训练进程启动失败"
echo "📋 查看日志: $LOG_FILE"
exit 1
fi
}
# ----------------------------------------------------------------------------
# 🤖 [AI构建] 清理函数
# ----------------------------------------------------------------------------
cleanup() {
echo "🧹 清理临时文件..."
# 在这里添加清理逻辑
}
# ----------------------------------------------------------------------------
# 🤖 [AI构建] 信号处理
# ----------------------------------------------------------------------------
trap cleanup EXIT
trap 'echo "❌ 实验被中断"; cleanup; exit 130' INT TERM
# ----------------------------------------------------------------------------
# 🤖 [AI构建] 主程序入口
# ----------------------------------------------------------------------------
main() {
echo "============================================================================"
echo "🧠 MiniMind 预训练实验"
echo "============================================================================"
# 执行检查和初始化
check_environment
log_experiment_info
# 运行实验
run_experiment
echo "============================================================================"
echo "✅ 实验 $EXPERIMENT_VERSION 完成"
echo "📅 完成时间: $(date)"
echo "============================================================================"
}
# 执行主程序
main "$@"