Minimind/model/model.py

388 lines
17 KiB
Python
Raw Normal View History

2024-08-28 16:41:44 +08:00
import math
import struct
import inspect
import time
2024-08-28 16:41:44 +08:00
from .LMConfig import LMConfig
2025-04-05 12:03:04 +08:00
from typing import Any, Optional, Tuple, List, Union
2024-08-28 16:41:44 +08:00
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
2024-09-20 17:04:16 +08:00
2024-08-28 16:41:44 +08:00
class RMSNorm(torch.nn.Module):
2025-04-01 16:03:44 +08:00
def __init__(self, dim: int, eps: float = 1e-6):
2024-08-28 16:41:44 +08:00
super().__init__()
2024-09-20 17:04:16 +08:00
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
2024-08-28 16:41:44 +08:00
2025-04-01 16:03:44 +08:00
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
2024-08-28 16:41:44 +08:00
def forward(self, x):
2025-04-01 16:03:44 +08:00
return self.weight * self._norm(x.float()).type_as(x)
2024-09-20 17:04:16 +08:00
2024-08-28 16:41:44 +08:00
2025-02-15 20:26:34 +08:00
def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
2024-09-20 17:04:16 +08:00
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
2024-08-28 16:41:44 +08:00
return pos_cis
2024-09-20 17:04:16 +08:00
2024-08-28 16:41:44 +08:00
def apply_rotary_emb(xq, xk, pos_cis):
def unite_shape(pos_cis, x):
ndim = x.ndim
assert 0 <= 1 < ndim
assert pos_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return pos_cis.view(*shape)
2024-09-20 17:04:16 +08:00
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
pos_cis = unite_shape(pos_cis, xq_)
xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
2024-08-28 16:41:44 +08:00
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
2024-09-20 17:04:16 +08:00
2024-08-28 16:41:44 +08:00
class Attention(nn.Module):
def __init__(self, args: LMConfig):
super().__init__()
2024-09-20 17:04:16 +08:00
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
assert args.n_heads % self.n_kv_heads == 0
self.n_local_heads = args.n_heads
self.n_local_kv_heads = self.n_kv_heads
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
self.attn_dropout = nn.Dropout(args.dropout)
self.resid_dropout = nn.Dropout(args.dropout)
self.dropout = args.dropout
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
mask = torch.triu(mask, diagonal=1)
2024-09-21 20:00:25 +08:00
self.register_buffer("mask", mask, persistent=False)
2024-08-28 16:41:44 +08:00
2025-02-09 23:49:47 +08:00
def forward(self,
x: torch.Tensor,
pos_cis: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache=False):
bsz, seq_len, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
2025-02-09 23:49:47 +08:00
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
2024-08-28 16:41:44 +08:00
2024-09-20 17:04:16 +08:00
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
2025-02-09 23:49:47 +08:00
# kv_cache实现
if past_key_value is not None:
xk = torch.cat([past_key_value[0], xk], dim=1)
xv = torch.cat([past_key_value[1], xv], dim=1)
past_kv = (xk, xv) if use_cache else None
xq, xk, xv = (
xq.transpose(1, 2),
repeat_kv(xk, self.n_rep).transpose(1, 2),
repeat_kv(xv, self.n_rep).transpose(1, 2)
)
if self.flash and seq_len != 1:
dropout_p = self.dropout if self.training else 0.0
output = F.scaled_dot_product_attention(
xq, xk, xv,
attn_mask=None,
dropout_p=dropout_p,
is_causal=True
)
2024-08-28 16:41:44 +08:00
else:
2025-02-09 23:49:47 +08:00
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
scores += self.mask[:, :, :seq_len, :seq_len]
2024-09-20 17:04:16 +08:00
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
2025-02-09 23:49:47 +08:00
output = scores @ xv
2024-09-20 17:04:16 +08:00
2025-02-09 23:49:47 +08:00
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
output = self.resid_dropout(self.wo(output))
return output, past_kv
2024-08-28 16:41:44 +08:00
class FeedForward(nn.Module):
2025-02-09 23:49:47 +08:00
def __init__(self, config: LMConfig):
2024-08-28 16:41:44 +08:00
super().__init__()
2025-02-09 23:49:47 +08:00
if config.hidden_dim is None:
hidden_dim = 4 * config.dim
2024-09-20 17:04:16 +08:00
hidden_dim = int(2 * hidden_dim / 3)
2025-02-09 23:49:47 +08:00
config.hidden_dim = config.multiple_of * ((hidden_dim + config.multiple_of - 1) // config.multiple_of)
self.w1 = nn.Linear(config.dim, config.hidden_dim, bias=False)
self.w2 = nn.Linear(config.hidden_dim, config.dim, bias=False)
self.w3 = nn.Linear(config.dim, config.hidden_dim, bias=False)
self.dropout = nn.Dropout(config.dropout)
2024-08-28 16:41:44 +08:00
def forward(self, x):
2024-09-20 17:04:16 +08:00
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
2024-08-28 16:41:44 +08:00
class MoEGate(nn.Module):
def __init__(self, config: LMConfig):
super().__init__()
self.config = config
2024-09-20 17:04:16 +08:00
self.top_k = config.num_experts_per_tok
self.n_routed_experts = config.n_routed_experts
2024-08-28 16:41:44 +08:00
2024-09-20 17:04:16 +08:00
self.scoring_func = config.scoring_func
self.alpha = config.aux_loss_alpha
self.seq_aux = config.seq_aux
2024-08-28 16:41:44 +08:00
2024-09-20 17:04:16 +08:00
self.norm_topk_prob = config.norm_topk_prob
self.gating_dim = config.dim
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
self.reset_parameters()
2024-08-28 16:41:44 +08:00
def reset_parameters(self) -> None:
import torch.nn.init as init
2024-09-20 17:04:16 +08:00
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
2024-08-28 16:41:44 +08:00
def forward(self, hidden_states):
bsz, seq_len, h = hidden_states.shape
2024-09-20 17:04:16 +08:00
hidden_states = hidden_states.view(-1, h)
logits = F.linear(hidden_states, self.weight, None)
2024-08-28 16:41:44 +08:00
if self.scoring_func == 'softmax':
2024-09-20 17:04:16 +08:00
scores = logits.softmax(dim=-1)
2024-08-28 16:41:44 +08:00
else:
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
2024-09-20 17:04:16 +08:00
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
2024-08-28 16:41:44 +08:00
if self.top_k > 1 and self.norm_topk_prob:
2024-09-20 17:04:16 +08:00
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
topk_weight = topk_weight / denominator
2024-08-28 16:41:44 +08:00
if self.training and self.alpha > 0.0:
scores_for_aux = scores
aux_topk = self.top_k
topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
if self.seq_aux:
scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
ce.scatter_add_(1, topk_idx_for_aux_loss,
torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(
seq_len * aux_topk / self.n_routed_experts)
aux_loss = (ce * scores_for_seq_aux.mean(dim=1)).sum(dim=1).mean() * self.alpha
else:
mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
ce = mask_ce.float().mean(0)
Pi = scores_for_aux.mean(0)
fi = ce * self.n_routed_experts
aux_loss = (Pi * fi).sum() * self.alpha
else:
2025-02-09 23:49:47 +08:00
aux_loss = 0
2024-09-20 17:04:16 +08:00
return topk_idx, topk_weight, aux_loss
2024-08-28 16:41:44 +08:00
class MOEFeedForward(nn.Module):
def __init__(self, config: LMConfig):
super().__init__()
self.config = config
self.experts = nn.ModuleList([
2025-02-09 23:49:47 +08:00
FeedForward(config)
2024-08-28 16:41:44 +08:00
for _ in range(config.n_routed_experts)
2024-09-20 17:04:16 +08:00
])
self.gate = MoEGate(config)
2024-08-28 16:41:44 +08:00
if config.n_shared_experts is not None:
2025-02-09 23:49:47 +08:00
self.shared_experts = FeedForward(config)
2024-08-28 16:41:44 +08:00
def forward(self, x):
identity = x
orig_shape = x.shape
bsz, seq_len, _ = x.shape
# 使用门控机制选择专家
topk_idx, topk_weight, aux_loss = self.gate(x)
x = x.view(-1, x.shape[-1])
flat_topk_idx = topk_idx.view(-1)
if self.training:
# 训练模式下,重复输入数据
x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
y = torch.empty_like(x, dtype=torch.float16)
for i, expert in enumerate(self.experts):
2025-02-09 23:49:47 +08:00
y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(y.dtype) # 确保类型一致
2024-08-28 16:41:44 +08:00
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
y = y.view(*orig_shape)
else:
# 推理模式下,只选择最优专家
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
if self.config.n_shared_experts is not None:
y = y + self.shared_experts(identity)
2025-02-09 23:49:47 +08:00
self.aux_loss = aux_loss
2024-08-28 16:41:44 +08:00
return y
@torch.no_grad()
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
expert_cache = torch.zeros_like(x)
idxs = flat_expert_indices.argsort()
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
token_idxs = idxs // self.config.num_experts_per_tok
# 例如当tokens_per_expert=[6, 15, 20, 26, 33, 38, 46, 52]
# 当token_idxs=[3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...]
# 意味着当token_idxs[:6] -> [3, 7, 19, 21, 24, 25, 4]位置的token都由专家0处理token_idxs[6:15]位置的token都由专家1处理......
for i, end_idx in enumerate(tokens_per_expert):
start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
if start_idx == end_idx:
continue
expert = self.experts[i]
exp_token_idx = token_idxs[start_idx:end_idx]
expert_tokens = x[exp_token_idx]
2025-02-09 23:49:47 +08:00
expert_out = expert(expert_tokens).to(expert_cache.dtype)
2024-08-28 16:41:44 +08:00
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
# 使用 scatter_add_ 进行 sum 操作
expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)
return expert_cache
2024-09-20 17:04:16 +08:00
2025-02-09 23:49:47 +08:00
class MiniMindBlock(nn.Module):
def __init__(self, layer_id: int, config: LMConfig):
2024-08-28 16:41:44 +08:00
super().__init__()
2025-02-09 23:49:47 +08:00
self.n_heads = config.n_heads
self.dim = config.dim
self.head_dim = config.dim // config.n_heads
self.attention = Attention(config)
2024-08-28 16:41:44 +08:00
self.layer_id = layer_id
2025-02-09 23:49:47 +08:00
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
def forward(self, x, pos_cis, past_key_value=None, use_cache=False):
h_attn, past_kv = self.attention(
self.attention_norm(x),
pos_cis,
past_key_value=past_key_value,
use_cache=use_cache
)
h = x + h_attn
2024-09-20 17:04:16 +08:00
out = h + self.feed_forward(self.ffn_norm(h))
2025-02-09 23:49:47 +08:00
return out, past_kv
2024-08-28 16:41:44 +08:00
2025-02-09 23:49:47 +08:00
class MiniMindLM(PreTrainedModel):
2024-08-28 16:41:44 +08:00
config_class = LMConfig
def __init__(self, params: LMConfig = None):
2025-02-09 23:49:47 +08:00
self.params = params or LMConfig()
super().__init__(self.params)
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
2024-09-20 17:04:16 +08:00
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.dropout = nn.Dropout(params.dropout)
2025-02-09 23:49:47 +08:00
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
2024-09-20 17:04:16 +08:00
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
self.tok_embeddings.weight = self.output.weight
2025-02-15 20:26:34 +08:00
self.register_buffer("pos_cis",
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta),
persistent=False)
2024-09-20 17:04:16 +08:00
self.OUT = CausalLMOutputWithPast()
2024-08-28 16:41:44 +08:00
2025-02-09 23:49:47 +08:00
def forward(self,
input_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[List[Tuple[torch.Tensor, torch.Tensor]]] = None,
use_cache: bool = False,
2025-04-05 12:03:04 +08:00
logits_to_keep: Union[int, torch.Tensor] = 0,
2025-02-09 23:49:47 +08:00
**args):
past_key_values = past_key_values or [None] * len(self.layers)
start_pos = args.get('start_pos', 0)
h = self.dropout(self.tok_embeddings(input_ids))
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
past_kvs = []
for l, layer in enumerate(self.layers):
h, past_kv = layer(
h, pos_cis,
past_key_value=past_key_values[l],
use_cache=use_cache
)
past_kvs.append(past_kv)
2025-04-05 12:03:04 +08:00
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.output(self.norm(h)[:, slice_indices, :])
2025-02-09 23:49:47 +08:00
aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward))
2025-04-05 14:39:56 +08:00
self.OUT.__setitem__('last_hidden_state', h)
2024-09-20 17:04:16 +08:00
self.OUT.__setitem__('logits', logits)
2025-02-09 23:49:47 +08:00
self.OUT.__setitem__('aux_loss', aux_loss)
self.OUT.__setitem__('past_key_values', past_kvs)
2024-09-20 17:04:16 +08:00
return self.OUT
2024-08-28 16:41:44 +08:00
2024-09-20 17:04:16 +08:00
@torch.inference_mode()
2025-02-09 23:49:47 +08:00
def generate(self, input_ids, eos_token_id=2, max_new_tokens=1024, temperature=0.75, top_p=0.90,
2025-04-05 12:03:04 +08:00
stream=False, rp=1., use_cache=True, pad_token_id=0, num_return_sequences=1, **args):
2025-02-09 23:49:47 +08:00
# 流式生成
if stream:
2025-02-15 23:56:09 +08:00
return self._stream(input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache, **args)
2025-02-09 23:49:47 +08:00
# 直接生成
generated = []
for i in range(input_ids.size(0)):
non_pad = input_ids[i][input_ids[i] != pad_token_id].unsqueeze(0)
2025-04-05 12:03:04 +08:00
for _ in range(num_return_sequences):
out = self._stream(non_pad, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache, **args)
tokens_list = [tokens[:, -1:] for tokens in out]
gen = torch.cat(tokens_list, dim=-1) if tokens_list else non_pad
full_sequence = torch.cat([non_pad, gen], dim=-1)
generated.append(full_sequence)
2025-02-09 23:49:47 +08:00
max_length = max(seq.size(1) for seq in generated)
generated = [
torch.cat(
[seq, torch.full((1, max_length - seq.size(1)), pad_token_id, dtype=seq.dtype, device=seq.device)],
dim=-1)
for seq in generated
]
2025-04-05 12:03:04 +08:00
output = torch.cat(generated, dim=0)
2025-04-05 15:53:55 +08:00
res = output.view(input_ids.size(0) * num_return_sequences, -1)
2025-04-05 12:03:04 +08:00
return res
2025-02-09 23:49:47 +08:00
2025-02-15 23:56:09 +08:00
def _stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache, **args):
2025-02-09 23:49:47 +08:00
start, first_seq, past_kvs = input_ids.shape[1], True, None
while input_ids.shape[1] < max_new_tokens - 1:
if first_seq or not use_cache:
2025-02-15 23:55:10 +08:00
out, first_seq = self(input_ids, past_key_values=past_kvs, use_cache=use_cache, **args), False
else:
2025-02-09 23:49:47 +08:00
out = self(input_ids[:, -1:], past_key_values=past_kvs, use_cache=use_cache,
2025-02-15 23:55:10 +08:00
start_pos=input_ids.shape[1] - 1, **args)
2025-02-09 23:49:47 +08:00
logits, past_kvs = out.logits[:, -1, :], out.past_key_values
logits[:, list(set(input_ids.tolist()[0]))] /= rp
logits /= (temperature + 1e-9)
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
sorted_probs = F.softmax(sorted_logits, dim=-1)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
sorted_indices_to_remove[:, 0] = False
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
logits[indices_to_remove] = -float('Inf')
input_ids_next = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
input_ids = torch.cat((input_ids, input_ids_next), dim=1)
yield input_ids[:, start:]
if input_ids_next.item() == eos_token_id:
2024-08-28 16:41:44 +08:00
break