2025-02-09 23:49:47 +08:00
|
|
|
|
import os
|
2025-04-24 15:58:39 +08:00
|
|
|
|
# 设置环境变量
|
|
|
|
|
os.environ["WANDB_MODE"] = "offline" # 或者使用 "dryrun"
|
2025-02-09 23:49:47 +08:00
|
|
|
|
import platform
|
|
|
|
|
import argparse
|
|
|
|
|
import time
|
|
|
|
|
import math
|
|
|
|
|
import warnings
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import torch
|
|
|
|
|
import torch.distributed as dist
|
|
|
|
|
from torch import optim, nn
|
|
|
|
|
from torch.nn.parallel import DistributedDataParallel
|
|
|
|
|
from torch.optim.lr_scheduler import CosineAnnealingLR
|
|
|
|
|
from torch.utils.data import DataLoader, DistributedSampler
|
|
|
|
|
from contextlib import nullcontext
|
2025-05-08 15:41:04 +00:00
|
|
|
|
from typing import Optional
|
2025-02-09 23:49:47 +08:00
|
|
|
|
|
|
|
|
|
from transformers import AutoTokenizer
|
|
|
|
|
|
|
|
|
|
from model.model import MiniMindLM
|
|
|
|
|
from model.LMConfig import LMConfig
|
|
|
|
|
from model.dataset import PretrainDataset
|
|
|
|
|
|
|
|
|
|
warnings.filterwarnings('ignore')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def Logger(content):
|
2025-04-24 15:58:39 +08:00
|
|
|
|
# 如果没有使用ddp或者ddp的主设备,那么就打印
|
2025-02-09 23:49:47 +08:00
|
|
|
|
if not ddp or dist.get_rank() == 0:
|
|
|
|
|
print(content)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def get_lr(current_step, total_steps, lr):
|
2025-04-24 15:58:39 +08:00
|
|
|
|
# 更新学习率
|
|
|
|
|
# \text{get\_lr}(c, t, l) = \frac{l}{10} + 0.5 \cdot l \cdot \left(1 + \cos\left(\frac{\pi \cdot c}{t}\right)\right)
|
2025-02-09 23:49:47 +08:00
|
|
|
|
return lr / 10 + 0.5 * lr * (1 + math.cos(math.pi * current_step / total_steps))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train_epoch(epoch, wandb):
|
2025-05-08 15:41:04 +00:00
|
|
|
|
loss_fct = nn.CrossEntropyLoss(reduction='none')
|
2025-02-09 23:49:47 +08:00
|
|
|
|
start_time = time.time()
|
2025-05-12 11:53:10 +08:00
|
|
|
|
# 在函数开始处定义moe_path,避免在异常处理中引用未定义变量
|
|
|
|
|
moe_path = '_moe' if lm_config.use_moe else ''
|
2025-02-09 23:49:47 +08:00
|
|
|
|
for step, (X, Y, loss_mask) in enumerate(train_loader):
|
2025-05-08 15:41:04 +00:00
|
|
|
|
try:
|
|
|
|
|
# 将数据加载到设备上
|
|
|
|
|
X = X.to(args.device)
|
|
|
|
|
Y = Y.to(args.device)
|
|
|
|
|
loss_mask = loss_mask.to(args.device)
|
|
|
|
|
|
|
|
|
|
# 更新学习率
|
|
|
|
|
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch, args.learning_rate)
|
|
|
|
|
for param_group in optimizer.param_groups:
|
|
|
|
|
param_group['lr'] = lr
|
|
|
|
|
|
|
|
|
|
with ctx:
|
|
|
|
|
res = model(X)
|
|
|
|
|
loss = loss_fct(
|
|
|
|
|
res.logits.view(-1, res.logits.size(-1)),
|
|
|
|
|
Y.view(-1)
|
|
|
|
|
).view(Y.size())
|
|
|
|
|
loss = (loss * loss_mask).sum() / loss_mask.sum()
|
2025-05-12 11:53:10 +08:00
|
|
|
|
# 添加辅助损失,如果存在的话
|
|
|
|
|
try:
|
|
|
|
|
if hasattr(model, 'module'):
|
|
|
|
|
# DDP情况
|
|
|
|
|
aux_loss = sum(l.feed_forward.aux_loss for l in model.module.layers
|
|
|
|
|
if hasattr(l.feed_forward, 'aux_loss'))
|
|
|
|
|
else:
|
|
|
|
|
# 非DDP情况
|
|
|
|
|
aux_loss = sum(l.feed_forward.aux_loss for l in model.layers
|
|
|
|
|
if hasattr(l.feed_forward, 'aux_loss'))
|
|
|
|
|
loss += aux_loss
|
|
|
|
|
except Exception as e:
|
|
|
|
|
Logger(f"Warning: Could not add auxiliary loss: {e}")
|
|
|
|
|
# 如果出错,不添加辅助损失
|
2025-05-08 15:41:04 +00:00
|
|
|
|
loss = loss / args.accumulation_steps
|
|
|
|
|
|
|
|
|
|
# Print data types for debugging
|
|
|
|
|
if step == 0 and (not ddp or dist.get_rank() == 0): # Print only for the first step of the first epoch on the main process
|
|
|
|
|
Logger("---- Data Type Check ----")
|
|
|
|
|
Logger(f"X.dtype: {X.dtype}")
|
|
|
|
|
if hasattr(model, 'module'): # DDP case
|
|
|
|
|
Logger(f"Model parameter dtype: {next(model.module.parameters()).dtype}")
|
|
|
|
|
else: # Non-DDP case
|
|
|
|
|
Logger(f"Model parameter dtype: {next(model.parameters()).dtype}")
|
|
|
|
|
Logger(f"res.logits.dtype: {res.logits.dtype}")
|
|
|
|
|
Logger(f"loss.dtype: {loss.dtype}")
|
|
|
|
|
Logger("-------------------------")
|
|
|
|
|
|
|
|
|
|
scaler.scale(loss).backward()
|
|
|
|
|
|
|
|
|
|
if (step + 1) % args.accumulation_steps == 0:
|
|
|
|
|
scaler.unscale_(optimizer)
|
|
|
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
|
|
|
|
|
|
|
|
|
|
scaler.step(optimizer)
|
|
|
|
|
scaler.update()
|
|
|
|
|
|
|
|
|
|
optimizer.zero_grad(set_to_none=True)
|
|
|
|
|
|
|
|
|
|
# 打印日志
|
|
|
|
|
if step % args.log_interval == 0:
|
|
|
|
|
spend_time = time.time() - start_time
|
|
|
|
|
Logger(
|
|
|
|
|
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.12f} epoch_Time:{}min:'.format(
|
|
|
|
|
epoch + 1,
|
|
|
|
|
args.epochs,
|
|
|
|
|
step,
|
|
|
|
|
iter_per_epoch,
|
|
|
|
|
loss.item() * args.accumulation_steps,
|
|
|
|
|
optimizer.param_groups[-1]['lr'],
|
|
|
|
|
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
|
|
|
|
|
|
|
|
|
if (wandb is not None) and (not ddp or dist.get_rank() == 0):
|
|
|
|
|
wandb.log({"loss": loss.item() * args.accumulation_steps,
|
|
|
|
|
"lr": optimizer.param_groups[-1]['lr'],
|
|
|
|
|
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
|
|
|
|
|
|
|
|
|
# 保存模型
|
|
|
|
|
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
|
|
|
|
|
model.eval()
|
2025-05-12 11:53:10 +08:00
|
|
|
|
# 使用函数开始处定义的moe_path变量
|
2025-05-08 15:41:04 +00:00
|
|
|
|
ckp = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}.pth'
|
|
|
|
|
|
|
|
|
|
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
|
|
|
|
state_dict = model.module.state_dict() #获取模型参数
|
|
|
|
|
else:
|
|
|
|
|
state_dict = model.state_dict() #获取模型参数
|
|
|
|
|
|
|
|
|
|
torch.save(state_dict, ckp) #只保存参数
|
|
|
|
|
model.train()
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(f"Error occurred: {str(e)}")
|
|
|
|
|
save_path = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}_nanERROR.pth'
|
|
|
|
|
if os.path.exists(save_path):
|
|
|
|
|
os.remove(save_path)
|
2025-05-12 11:53:10 +08:00
|
|
|
|
|
2025-02-09 23:49:47 +08:00
|
|
|
|
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
2025-05-12 11:53:10 +08:00
|
|
|
|
state_dict = model.module.state_dict()
|
2025-02-09 23:49:47 +08:00
|
|
|
|
else:
|
2025-05-08 15:41:04 +00:00
|
|
|
|
state_dict = model.state_dict()
|
|
|
|
|
torch.save(state_dict, save_path)
|
|
|
|
|
|
|
|
|
|
for name, param in model.named_parameters():
|
|
|
|
|
if param.grad is not None and torch.isnan(param.grad).any():
|
|
|
|
|
print(f"NaN gradient in parameter: {name}")
|
2025-05-12 11:53:10 +08:00
|
|
|
|
|
2025-05-08 15:41:04 +00:00
|
|
|
|
for name, param in model.named_parameters():
|
|
|
|
|
if param.grad is not None and torch.isnan(param.grad).any():
|
|
|
|
|
print(f"Parameter {name} values: {param.data}")
|
|
|
|
|
print(f"Parameter {name} gradients: {param.grad}")
|
2025-05-12 11:53:10 +08:00
|
|
|
|
|
2025-05-08 15:41:04 +00:00
|
|
|
|
raise ValueError("NaN gradient detected")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_model(lm_config, pretrained_embedding_path: Optional[str] = None):
|
2025-04-24 15:58:39 +08:00
|
|
|
|
# 加载tokenizer
|
2025-02-09 23:49:47 +08:00
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
|
2025-04-24 15:58:39 +08:00
|
|
|
|
# 加载模型
|
2025-02-09 23:49:47 +08:00
|
|
|
|
model = MiniMindLM(lm_config).to(args.device)
|
2025-05-08 15:41:04 +00:00
|
|
|
|
|
|
|
|
|
# Load pretrained token embeddings if path is provided
|
|
|
|
|
if pretrained_embedding_path and os.path.exists(pretrained_embedding_path):
|
|
|
|
|
Logger(f"Loading pretrained token embeddings from {pretrained_embedding_path}")
|
|
|
|
|
embedding_weights = torch.load(pretrained_embedding_path, map_location=args.device)
|
|
|
|
|
model.tok_embeddings.load_state_dict(embedding_weights)
|
|
|
|
|
Logger("Successfully loaded pretrained token embeddings.")
|
|
|
|
|
elif pretrained_embedding_path:
|
|
|
|
|
Logger(f"Warning: Pretrained embedding path {pretrained_embedding_path} provided but file does not exist. Initializing embeddings from scratch.")
|
|
|
|
|
|
2025-04-24 15:58:39 +08:00
|
|
|
|
# 打印模型参数
|
2025-02-09 23:49:47 +08:00
|
|
|
|
Logger(f'LLM总参数量:{sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} 百万')
|
|
|
|
|
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def init_distributed_mode():
|
2025-04-24 15:58:39 +08:00
|
|
|
|
if not ddp: return #如果没有启用分布式数据并行(DDP),直接返回,不执行任何操作。
|
|
|
|
|
global ddp_local_rank, DEVICE #声明这两个变量为全局变量,以便在函数外部也能访问它们。
|
2025-02-09 23:49:47 +08:00
|
|
|
|
|
2025-04-24 15:58:39 +08:00
|
|
|
|
dist.init_process_group(backend="nccl") #初始化分布式进程组,使用NCCL后端(NVIDIA Collective Communications Library),这是NVIDIA GPU之间通信的优化库。
|
|
|
|
|
ddp_rank = int(os.environ["RANK"]) #从环境变量获取当前进程的全局编号。
|
|
|
|
|
ddp_local_rank = int(os.environ["LOCAL_RANK"]) #从环境变量获取当前进程的本地编号。
|
|
|
|
|
ddp_world_size = int(os.environ["WORLD_SIZE"]) #从环境变量获取当前进程组中的进程总数。
|
|
|
|
|
DEVICE = f"cuda:{ddp_local_rank}" #根据本地编号选择GPU设备。
|
|
|
|
|
torch.cuda.set_device(DEVICE) #设置当前进程的GPU设备。
|
2025-02-09 23:49:47 +08:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# torchrun --nproc_per_node 2 1-pretrain.py
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
parser = argparse.ArgumentParser(description="MiniMind Pretraining")
|
|
|
|
|
parser.add_argument("--out_dir", type=str, default="out")
|
|
|
|
|
# 若要以最快速度实现zero则epochs设置为1轮;否则应当利用有限的数据训练2~6个epochs。
|
2025-04-24 15:58:39 +08:00
|
|
|
|
parser.add_argument("--epochs", type=int, default=3)
|
2025-05-12 11:53:10 +08:00
|
|
|
|
parser.add_argument("--batch_size", type=int, default=8)
|
2025-05-12 00:21:07 +08:00
|
|
|
|
parser.add_argument("--learning_rate", type=float, default=2e-4)
|
2025-04-24 15:58:39 +08:00
|
|
|
|
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu") #如果GPU可用,则使用GPU,否则使用CPU。
|
2025-02-09 23:49:47 +08:00
|
|
|
|
parser.add_argument("--dtype", type=str, default="bfloat16")
|
2025-05-08 15:47:00 +00:00
|
|
|
|
parser.add_argument("--use_wandb", default=True, action="store_true")
|
2025-02-09 23:49:47 +08:00
|
|
|
|
parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain")
|
2025-04-24 15:58:39 +08:00
|
|
|
|
parser.add_argument("--num_workers", type=int, default=8)
|
2025-02-09 23:49:47 +08:00
|
|
|
|
parser.add_argument("--ddp", action="store_true")
|
2025-05-12 00:21:07 +08:00
|
|
|
|
parser.add_argument("--accumulation_steps", type=int, default=64) #梯度累积步数,用于控制梯度更新频率。
|
2025-04-24 15:58:39 +08:00
|
|
|
|
parser.add_argument("--grad_clip", type=float, default=1.0) #梯度裁剪阈值,用于防止梯度爆炸。
|
|
|
|
|
parser.add_argument("--warmup_iters", type=int, default=0) #预热迭代次数,用于控制学习率预热过程。
|
|
|
|
|
parser.add_argument("--log_interval", type=int, default=100) #日志打印间隔,用于控制日志打印的频率。
|
|
|
|
|
parser.add_argument("--save_interval", type=int, default=100) #模型保存间隔,用于控制模型保存的频率。
|
|
|
|
|
parser.add_argument('--local_rank', type=int, default=-1) #本地进程编号,用于分布式训练。
|
2025-05-12 11:53:10 +08:00
|
|
|
|
parser.add_argument('--dim', default=2048, type=int) #模型维度,用于控制模型的大小。
|
2025-05-12 00:21:07 +08:00
|
|
|
|
parser.add_argument('--n_layers', default=32, type=int) #层数,用于控制模型层数。
|
2025-05-12 11:53:10 +08:00
|
|
|
|
parser.add_argument('--max_seq_len', default=1024, type=int) #最大序列长度,用于控制输入序列的最大长度。
|
2025-04-24 15:58:39 +08:00
|
|
|
|
parser.add_argument('--use_moe', default=False, type=bool) #是否使用MOE,用于控制是否使用MOE。
|
2025-05-09 15:19:41 +08:00
|
|
|
|
parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能,使用固定值1e-4替代") #禁用数据库功能,启用特殊模式
|
2025-04-24 15:58:39 +08:00
|
|
|
|
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") #数据路径,用于控制数据集的路径。
|
2025-05-08 15:41:04 +00:00
|
|
|
|
parser.add_argument("--pretrained_embedding_path", type=str, default=None, help="Path to pretrained token embedding weights (.pth file)")
|
2025-02-09 23:49:47 +08:00
|
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
2025-05-09 15:19:41 +08:00
|
|
|
|
lm_config = LMConfig(
|
2025-05-12 11:53:10 +08:00
|
|
|
|
dim=args.dim,
|
|
|
|
|
n_layers=args.n_layers,
|
|
|
|
|
max_seq_len=args.max_seq_len,
|
2025-05-09 15:19:41 +08:00
|
|
|
|
use_moe=args.use_moe,
|
|
|
|
|
disable_db=args.disable_db # 添加禁用数据库参数
|
|
|
|
|
) #创建LMConfig对象,用于控制模型配置。
|
2025-04-24 15:58:39 +08:00
|
|
|
|
args.save_dir = os.path.join(args.out_dir) #创建保存目录。
|
|
|
|
|
os.makedirs(args.save_dir, exist_ok=True) #创建保存目录。
|
|
|
|
|
os.makedirs(args.out_dir, exist_ok=True) #创建输出目录。
|
|
|
|
|
tokens_per_iter = args.batch_size * lm_config.max_seq_len #计算每个迭代步骤的token数量。
|
|
|
|
|
print(f"tokens_per_iter: {tokens_per_iter}")
|
|
|
|
|
device_type = "cuda" if "cuda" in args.device else "cpu" #确定设备类型。
|
2025-02-09 23:49:47 +08:00
|
|
|
|
|
2025-05-08 15:41:04 +00:00
|
|
|
|
# Determine the torch dtype
|
|
|
|
|
pt_dtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[args.dtype]
|
|
|
|
|
|
2025-02-09 23:49:47 +08:00
|
|
|
|
args.wandb_run_name = f"MiniMind-Pretrain-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
|
|
|
|
|
|
2025-05-08 15:41:04 +00:00
|
|
|
|
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast(dtype=pt_dtype)
|
2025-02-09 23:49:47 +08:00
|
|
|
|
|
|
|
|
|
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
|
|
|
|
|
ddp_local_rank, DEVICE = 0, "cuda:0"
|
|
|
|
|
|
2025-04-04 11:39:41 +08:00
|
|
|
|
base_seed = 1337
|
|
|
|
|
torch.manual_seed(base_seed)
|
|
|
|
|
torch.cuda.manual_seed(base_seed)
|
|
|
|
|
|
2025-02-09 23:49:47 +08:00
|
|
|
|
if ddp:
|
|
|
|
|
init_distributed_mode()
|
|
|
|
|
args.device = torch.device(DEVICE)
|
2025-04-04 11:39:41 +08:00
|
|
|
|
rank = dist.get_rank()
|
|
|
|
|
torch.manual_seed(base_seed + rank)
|
|
|
|
|
# 同时设置 CUDA 的随机种子
|
|
|
|
|
torch.cuda.manual_seed(base_seed + rank)
|
2025-02-09 23:49:47 +08:00
|
|
|
|
|
|
|
|
|
if args.use_wandb and (not ddp or ddp_local_rank == 0):
|
|
|
|
|
import wandb
|
2025-05-12 11:53:10 +08:00
|
|
|
|
|
2025-05-10 20:23:52 +08:00
|
|
|
|
# Merge args and lm_config parameters for wandb config
|
|
|
|
|
config = vars(args).copy()
|
|
|
|
|
config.update(lm_config.__dict__)
|
2025-05-12 11:53:10 +08:00
|
|
|
|
|
2025-05-08 15:47:00 +00:00
|
|
|
|
wandb.init(project=args.wandb_project, name=args.wandb_run_name, config=config)
|
2025-02-09 23:49:47 +08:00
|
|
|
|
else:
|
|
|
|
|
wandb = None
|
|
|
|
|
|
2025-05-08 15:41:04 +00:00
|
|
|
|
model, tokenizer = init_model(lm_config, args.pretrained_embedding_path)
|
2025-02-09 23:49:47 +08:00
|
|
|
|
train_ds = PretrainDataset(args.data_path, tokenizer, max_length=lm_config.max_seq_len)
|
|
|
|
|
train_sampler = DistributedSampler(train_ds) if ddp else None
|
|
|
|
|
train_loader = DataLoader(
|
|
|
|
|
train_ds,
|
|
|
|
|
batch_size=args.batch_size,
|
|
|
|
|
pin_memory=True,
|
|
|
|
|
drop_last=False,
|
|
|
|
|
shuffle=False,
|
|
|
|
|
num_workers=args.num_workers,
|
|
|
|
|
sampler=train_sampler
|
|
|
|
|
)
|
|
|
|
|
|
2025-05-08 15:41:04 +00:00
|
|
|
|
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16']))
|
2025-02-09 23:49:47 +08:00
|
|
|
|
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)
|
|
|
|
|
|
|
|
|
|
if ddp:
|
|
|
|
|
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
|
2025-05-12 11:53:10 +08:00
|
|
|
|
# 添加find_unused_parameters=True参数,解决未使用参数的问题
|
|
|
|
|
model = DistributedDataParallel(model, device_ids=[ddp_local_rank], find_unused_parameters=True)
|
|
|
|
|
|
2025-05-08 15:41:04 +00:00
|
|
|
|
torch.autograd.set_detect_anomaly(True)
|
2025-02-09 23:49:47 +08:00
|
|
|
|
iter_per_epoch = len(train_loader)
|
|
|
|
|
for epoch in range(args.epochs):
|
|
|
|
|
train_epoch(epoch, wandb)
|