Minimind/fast_inference.py

131 lines
4.6 KiB
Python
Raw Normal View History

2024-09-01 23:45:48 +08:00
import json
2024-10-30 15:26:28 +08:00
import random
import numpy as np
2024-09-01 23:45:48 +08:00
import streamlit as st
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
2024-10-30 15:26:28 +08:00
st.set_page_config(page_title="MiniMind-V1")
st.title("MiniMind-V1")
2024-09-01 23:45:48 +08:00
2024-10-30 15:26:28 +08:00
model_id = "./minimind-v1"
2024-09-01 23:45:48 +08:00
@st.cache_resource
def load_model_tokenizer():
model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
use_fast=False,
trust_remote_code=True
)
model = model.eval()
generation_config = GenerationConfig.from_pretrained(model_id)
return model, tokenizer, generation_config
2024-10-13 13:09:52 +08:00
2024-09-01 23:45:48 +08:00
def clear_chat_messages():
del st.session_state.messages
2024-10-30 15:26:28 +08:00
del st.session_state.chat_messages
2024-09-01 23:45:48 +08:00
def init_chat_messages():
with st.chat_message("assistant", avatar='🤖'):
2024-10-30 15:26:28 +08:00
st.markdown("我是由JingyaoGong创造的MiniMind很高兴为您服务😄 \n"
"所有AI生成内容的准确性和立场无法保证不代表我们的态度或观点。")
2024-09-01 23:45:48 +08:00
if "messages" in st.session_state:
for message in st.session_state.messages:
2024-10-30 15:26:28 +08:00
avatar = "🫡" if message["role"] == "user" else "🤖"
2024-09-01 23:45:48 +08:00
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
else:
st.session_state.messages = []
2024-10-30 15:26:28 +08:00
st.session_state.chat_messages = []
2024-09-01 23:45:48 +08:00
return st.session_state.messages
2024-10-13 13:09:52 +08:00
2024-10-30 15:26:28 +08:00
st.sidebar.title("设定调整")
st.session_state.history_chat_num = st.sidebar.slider("携带历史对话条数", 0, 6, 0, step=2)
st.session_state.max_new_tokens = st.sidebar.slider("最大输入/生成长度", 256, 768, 512, step=1)
st.session_state.top_k = st.sidebar.slider("top_k", 0, 16, 14, step=1)
st.session_state.temperature = st.sidebar.slider("temperature", 0.3, 1.3, 0.5, step=0.01)
def setup_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
2024-09-01 23:45:48 +08:00
def main():
model, tokenizer, generation_config = load_model_tokenizer()
messages = init_chat_messages()
if prompt := st.chat_input("Shift + Enter 换行, Enter 发送"):
with st.chat_message("user", avatar='🧑‍💻'):
st.markdown(prompt)
messages.append({"role": "user", "content": prompt})
2024-10-30 15:26:28 +08:00
st.session_state.chat_messages.append({"role": "user", "content": '请问,' + prompt + ''})
2024-09-01 23:45:48 +08:00
with st.chat_message("assistant", avatar='🤖'):
placeholder = st.empty()
2024-10-30 15:26:28 +08:00
# Generate a random seed
random_seed = random.randint(0, 2 ** 32 - 1)
setup_seed(random_seed)
2024-09-01 23:45:48 +08:00
new_prompt = tokenizer.apply_chat_template(
2024-10-30 15:26:28 +08:00
st.session_state.chat_messages[-(st.session_state.history_chat_num + 1):],
2024-09-01 23:45:48 +08:00
tokenize=False,
add_generation_prompt=True
2024-10-30 15:26:28 +08:00
)[-(st.session_state.max_new_tokens - 1):]
2024-09-01 23:45:48 +08:00
x = tokenizer(new_prompt).data['input_ids']
x = (torch.tensor(x, dtype=torch.long)[None, ...])
with torch.no_grad():
2024-10-30 15:26:28 +08:00
res_y = model.generate(x, tokenizer.eos_token_id, max_new_tokens=st.session_state.max_new_tokens,
temperature=st.session_state.temperature,
top_k=st.session_state.top_k, stream=True)
2024-09-01 23:45:48 +08:00
try:
y = next(res_y)
except StopIteration:
return
while y != None:
answer = tokenizer.decode(y[0].tolist())
if answer and answer[-1] == '<EFBFBD>':
try:
y = next(res_y)
except:
break
continue
if not len(answer):
try:
y = next(res_y)
except:
break
continue
placeholder.markdown(answer)
try:
y = next(res_y)
except:
break
2024-10-30 15:26:28 +08:00
assistant_answer = answer.replace(new_prompt, "")
messages.append({"role": "assistant", "content": assistant_answer})
st.session_state.chat_messages.append({"role": "assistant", "content": assistant_answer})
2024-09-01 23:45:48 +08:00
st.button("清空对话", on_click=clear_chat_messages)
if __name__ == "__main__":
main()