修正了key分解、负载均衡等错误

This commit is contained in:
iomgaa 2025-06-06 11:25:59 +08:00
parent 64e92473c3
commit 000e17a93f
5 changed files with 363 additions and 454 deletions

102
.vscode/launch.json vendored Normal file
View File

@ -0,0 +1,102 @@
{
"version": "0.2.0",
"configurations": [
{
"name": "Debug Train Pretrain Accelerate",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
"console": "integratedTerminal",
"python": "/home/iomgaa/miniconda3/envs/accelerate/bin/python",
"cwd": "${workspaceFolder}",
"env": {
"PYTHONPATH": "${workspaceFolder}",
"CUDA_VISIBLE_DEVICES": "0"
},
"justMyCode": false,
"stopOnEntry": false,
"redirectOutput": true
},
{
"name": "Debug Train Pretrain Accelerate (Multi-GPU)",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
"console": "integratedTerminal",
"python": "/home/iomgaa/miniconda3/envs/accelerate/bin/python",
"args": [
"--hidden_size", "512",
"--max_seq_len", "512",
"--n_layers", "8",
"--batch_size", "8",
"--epochs", "1"
],
"cwd": "${workspaceFolder}",
"env": {
"PYTHONPATH": "${workspaceFolder}",
"CUDA_VISIBLE_DEVICES": "0,1"
},
"justMyCode": false,
"stopOnEntry": false,
"redirectOutput": true
},
{
"name": "Debug Train Pretrain Accelerate (Small Test)",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
"console": "integratedTerminal",
"python": "/home/iomgaa/miniconda3/envs/accelerate/bin/python",
"args": [
"--hidden_size", "512",
"--max_seq_len", "512",
"--n_layers", "8",
"--batch_size", "2",
"--epochs", "1",
"--log_interval", "10",
"--save_interval", "100",
"--accumulation_steps", "4"
],
"cwd": "${workspaceFolder}",
"env": {
"PYTHONPATH": "${workspaceFolder}",
"CUDA_VISIBLE_DEVICES": "0",
"WANDB_MODE": "offline"
},
"justMyCode": false,
"stopOnEntry": false,
"redirectOutput": true
},
{
"name": "Debug ExtractDB Comparison",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
"console": "integratedTerminal",
"python": "/home/iomgaa/miniconda3/envs/accelerate/bin/python",
"args": [
"--hidden_size", "512",
"--max_seq_len", "256",
"--n_layers", "4",
"--batch_size", "2",
"--epochs", "1",
"--log_interval", "10",
"--save_interval", "200",
"--accumulation_steps", "2",
"--comparison_mode",
"--knowledge_num", "256",
"--knowledge_length", "64",
"--comparison_mode"
],
"cwd": "${workspaceFolder}",
"env": {
"PYTHONPATH": "${workspaceFolder}",
"CUDA_VISIBLE_DEVICES": "0",
"WANDB_MODE": "offline"
},
"justMyCode": false,
"stopOnEntry": false,
"redirectOutput": true
}
]
}

18
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,18 @@
{
"python.pythonPath": "/home/iomgaa/miniconda3/envs/accelerate/bin/python",
"python.defaultInterpreterPath": "/home/iomgaa/miniconda3/envs/accelerate/bin/python",
"python.terminal.activateEnvironment": true,
"python.terminal.activateEnvInCurrentTerminal": true,
"python.linting.enabled": true,
"python.linting.pylintEnabled": false,
"python.linting.flake8Enabled": true,
"python.formatting.provider": "black",
"python.analysis.autoImportCompletions": true,
"python.analysis.typeCheckingMode": "off",
"files.exclude": {
"**/__pycache__": true,
"**/*.pyc": true,
"**/.git": false,
"**/wandb": false
}
}

View File

@ -39,6 +39,7 @@ class LMConfig(PretrainedConfig):
####################################################
knowledge_num: int = 64*64,
knowledge_length: int = 8,
knowledge_dim: int = 128,
**kwargs,
):
self.dim = dim
@ -72,4 +73,5 @@ class LMConfig(PretrainedConfig):
####################################################
self.knowledge_num = knowledge_num
self.knowledge_length = knowledge_length
self.knowledge_dim = knowledge_dim
super().__init__(**kwargs)

View File

@ -11,14 +11,9 @@ import torch.nn.functional as F
from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from torch import nn, einsum
from einops import rearrange, repeat
def exists(val):
return val is not None
# RMSNorm 类定义了一个用于归一化输入张量的模块。
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
@ -31,7 +26,7 @@ class RMSNorm(torch.nn.Module):
def forward(self, x):
return self.weight * self._norm(x.float()).type_as(x)
# precompute_pos_cis 函数用于预计算位置编码(复数版本)。
def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
@ -39,7 +34,7 @@ def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return pos_cis
# apply_rotary_emb 函数用于应用旋转位置编码(复数版本)。
def apply_rotary_emb(xq, xk, pos_cis):
def unite_shape(pos_cis, x):
ndim = x.ndim
@ -55,200 +50,166 @@ def apply_rotary_emb(xq, xk, pos_cis):
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
# precompute_pos_cis_real 函数用于预计算位置编码(实数版本)。
def precompute_pos_cis_real(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
"""使用实数张量实现位置编码,避免使用复数张量
这个函数与precompute_pos_cis完全等价但使用实数张量而非复数张量
原始函数生成形状为[seq_len, dim//2]的复数张量其中实部全为1虚部为旋转角度
这个函数生成形状为[seq_len, dim]的实数张量其中偶数索引是cos(角度)奇数索引是sin(角度)
"""
# 确保dim是偶数
if dim % 2 != 0:
raise ValueError(f"维度必须是偶数,但得到了 {dim}")
# 复制原始函数的频率计算逻辑
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device)
freqs = torch.outer(t, freqs).float()
# 计算cos和sin值
# 在复数版本中pos_cis = torch.polar(torch.ones_like(freqs), freqs)
# 等价于 cos(freqs) + i*sin(freqs)
cos = torch.cos(freqs)
sin = torch.sin(freqs)
# 创建实数张量交错排列cos和sin
pos_emb = torch.zeros((end, dim), device=freqs.device)
pos_emb[:, 0::2] = cos # 偶数索引放cos
pos_emb[:, 1::2] = sin # 奇数索引放sin
return pos_emb
# apply_rotary_emb_real 函数用于应用旋转位置编码(实数版本)。
def apply_rotary_emb_real(xq, xk, pos_emb):
"""使用实数张量实现旋转位置编码,避免使用复数张量
这个函数与apply_rotary_emb完全等价但使用实数张量而非复数张量
原始函数将输入张量转换为复数形式与位置编码相乘然后再转回实数形式
这个函数直接使用实数运算实现相同的旋转操作
"""
# 获取形状信息
bsz, seq_len, n_heads, head_dim = xq.shape
# 确保pos_emb形状正确
assert pos_emb.shape[0] >= seq_len, f"位置编码长度 {pos_emb.shape[0]} 小于序列长度 {seq_len}"
assert pos_emb.shape[1] == head_dim, f"位置编码维度 {pos_emb.shape[1]} 与头维度 {head_dim} 不匹配"
# 截取需要的位置编码长度
pos_emb = pos_emb[:seq_len]
# 将pos_emb调整为广播形状 [1, seq_len, 1, head_dim]
pos_emb = pos_emb.unsqueeze(0).unsqueeze(2)
# 将head_dim分成两半
half_head_dim = head_dim // 2
# 提取cos和sin值偶数索引是cos奇数索引是sin
cos = pos_emb[..., 0::2]
sin = pos_emb[..., 1::2]
# 将xq和xk重新排列以便进行旋转操作
# 原始复数版本中xq和xk被重塑为复数张量其中实部和虚部交错排列
# 在实数版本中,我们需要将偶数索引和奇数索引分开处理
# 分离偶数和奇数索引
xq_even = xq[..., 0::2] # 偶数索引,对应复数的实部
xq_odd = xq[..., 1::2] # 奇数索引,对应复数的虚部
xk_even = xk[..., 0::2]
xk_odd = xk[..., 1::2]
# 应用旋转(等价于复数乘法)
# (a + bi)(cos + sin*i) = (a*cos - b*sin) + (a*sin + b*cos)i
# 其中a是偶数索引b是奇数索引
xq_out_even = xq_even * cos - xq_odd * sin # 新的偶数索引(实部)
xq_out_odd = xq_even * sin + xq_odd * cos # 新的奇数索引(虚部)
xk_out_even = xk_even * cos - xk_odd * sin
xk_out_odd = xk_even * sin + xk_odd * cos
# 重新组合偶数和奇数索引
xq_out = torch.zeros_like(xq)
xk_out = torch.zeros_like(xk)
xq_out[..., 0::2] = xq_out_even
xq_out[..., 1::2] = xq_out_odd
xk_out[..., 0::2] = xk_out_even
xk_out[..., 1::2] = xk_out_odd
return xq_out.type_as(xq), xk_out.type_as(xk)
# repeat_kv 函数用于重复键值对。
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
class Attention(nn.Module):
def __init__(self, args: LMConfig):
class KnowledgeDataset(nn.Module):
def __init__(self, params, tok_embeddings, is_train=True):
super().__init__()
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
assert args.n_heads % self.n_kv_heads == 0
self.n_local_heads = args.n_heads
self.n_local_kv_heads = self.n_kv_heads
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
self.attn_dropout = nn.Dropout(args.dropout)
self.resid_dropout = nn.Dropout(args.dropout)
self.dropout = args.dropout
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
mask = torch.triu(mask, diagonal=1)
self.register_buffer("mask", mask, persistent=False)
self.is_train = is_train
self.params = params
self.tok_embeddings = tok_embeddings
def forward(self,
x: torch.Tensor,
pos_cis: torch.Tensor,
db_value=None):
bsz, seq_len, _ = x.shape #bsz: 批量大小, seq_len: 序列长度, _: 隐藏维度
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) #将输入张量x分别通过线性层wq, wk, wv进行变换得到查询、键和值。
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim) #将变换后的张量xq重塑为形状为(bsz, seq_len, n_local_heads, head_dim)的形状。
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xk重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xv重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
# 应用旋转位置编码(使用实数版本)
xq, xk = apply_rotary_emb_real(xq, xk, pos_cis)
# kv_cache实现 REMOVED
# if past_key_value is not None:
# xk = torch.cat([past_key_value[0], xk], dim=1)
# xv = torch.cat([past_key_value[1], xv], dim=1)
# past_kv = (xk, xv) if use_cache else None
# 重复键值对
xq, xk, xv = (
xq.transpose(1, 2),
repeat_kv(xk, self.n_rep).transpose(1, 2),
repeat_kv(xv, self.n_rep).transpose(1, 2)
# 嵌入参数
self.knowledge_dim = params.knowledge_dim
self.key_dim = self.knowledge_dim // 2
self.to_queries = nn.Sequential(
nn.Linear(params.dim, self.knowledge_dim, bias=False),
)
# 如果提供了db_value根据头的数量调整它的形状并与xv合并
if db_value is not None:
# 确保db_value的形状与xv兼容假设db_value形状为[B, N, H, D]
if db_value.ndim == 4: # [B, N, H, D]
db_value = db_value.transpose(1, 2) # -> [B, H, N, D]
## 数据库参数
self.knowledge_num = params.knowledge_num
self.knowledge_length = params.knowledge_length
self.keys = nn.Parameter(torch.randn(self.knowledge_num, self.knowledge_dim) * 0.02, requires_grad=True)
self.product_key_topk = min(16, self.knowledge_num)
# 使用频率统计 - 使用register_buffer以便在GPU/CPU间正确移动
self.register_buffer('has_update_keys', torch.zeros(self.knowledge_num))
# 检查是否需要调整D维度
if db_value.shape[-1] != xv.shape[-1]:
# 如果db_value的维度与xv不同可以添加一个投影层
# 或者在这里使用简单的调整方法
# 这里我们简单地通过均值池化或重复来调整维度
if db_value.shape[-1] > xv.shape[-1]:
# 降维
factor = db_value.shape[-1] // xv.shape[-1]
db_value = db_value.view(bsz, self.n_local_heads, seq_len, factor, xv.shape[-1])
db_value = db_value.mean(dim=3)
else:
# 升维
factor = xv.shape[-1] // db_value.shape[-1]
db_value = db_value.unsqueeze(-1).repeat(1, 1, 1, 1, factor)
db_value = db_value.view(bsz, self.n_local_heads, seq_len, xv.shape[-1])
# 知识库存储 - 使用register_buffer因为这是整数索引不需要梯度
self.register_buffer('knowledge_dataset',
torch.randint(low=0, high=params.vocab_size, size=(self.knowledge_num, self.knowledge_length), dtype=torch.long)
)
# 将db_value与xv相加或融合
# 这里我们简单地将它们相加,但你也可以使用其他融合方法
xv = xv + db_value
# 计算step数目用于动态调整权重
self.step_counter = 0
# 使用Flash Attention
if self.flash and seq_len != 1:
dropout_p = self.dropout if self.training else 0.0
output = F.scaled_dot_product_attention(
xq, xk, xv,
attn_mask=None,
dropout_p=dropout_p,
is_causal=True
)
else:
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
scores += self.mask[:, :, :seq_len, :seq_len]
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
output = scores @ xv
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
output = self.resid_dropout(self.wo(output))
return output
def intelligent_selection(self, query, all_scores, all_indices):
"""智能分层选择策略"""
if self.is_train == False:
return all_scores, all_indices
batch_size = all_scores.size(0)
device = all_scores.device
dtype = all_scores.dtype
# 对每个batch进行分层选择
enhanced_scores = all_scores.clone()
query_features = query.mean(dim=1) # [batch_size, dim]
# 预先计算所有候选条目的嵌入(批量优化)
all_candidate_indices = torch.cat([all_indices[i] for i in range(batch_size)], dim=0)
unique_indices, inverse_indices = torch.unique(all_candidate_indices, return_inverse=True)
# 批量计算唯一候选条目的嵌入
candidate_tokens = self.knowledge_dataset[unique_indices]
flat_tokens = candidate_tokens.view(-1)
flat_embeddings = self.tok_embeddings(flat_tokens)
#获取flat_tokens对应的index
pre_update_indices = unique_indices.view(-1)
pre_update_embeddings = flat_embeddings.view(
len(unique_indices), self.knowledge_length, -1
)
unique_candidate_features = flat_embeddings.view(
len(unique_indices), self.knowledge_length, -1
).mean(dim=1) # [num_unique_candidates, dim]
# 归一化候选特征(优化相似度计算)
normalized_candidates = F.normalize(unique_candidate_features, dim=-1)
normalized_queries = F.normalize(query_features, dim=-1)
# 收集所有batch的best_tokens
batch_best_tokens = []
batch_best_tokens_embeddings = []
for batch_idx in range(batch_size):
indices = all_indices[batch_idx]
# 获取当前batch候选条目对应的特征索引
start_idx = batch_idx * len(indices)
end_idx = start_idx + len(indices)
batch_inverse_indices = inverse_indices[start_idx:end_idx]
# 使用预计算的归一化特征进行优化相似度计算
batch_candidate_features = normalized_candidates[batch_inverse_indices]
query_feature = normalized_queries[batch_idx]
# 使用矩阵乘法计算余弦相似度
similarity_scores = torch.mv(batch_candidate_features, query_feature)
# 找到最大相似度分数的索引
max_similarity_idx = torch.argmax(similarity_scores)
# 获取最大相似度对应的候选条目索引
best_candidate_idx = indices[max_similarity_idx]
# 获取对应的tokens
best_tokens = self.knowledge_dataset[best_candidate_idx]
best_tokens_embeddings = self.tok_embeddings(best_tokens)
# 将当前batch的best_tokens添加到列表中
batch_best_tokens.append(best_tokens)
batch_best_tokens_embeddings.append(best_tokens_embeddings)
# 将所有batch的best_tokens堆叠成一个张量
# [batch_size, knowledge_length]
all_best_tokens = torch.stack(batch_best_tokens, dim=0)
all_best_tokens_embeddings = torch.stack(batch_best_tokens_embeddings, dim=0)
# 获取
# 使用重新计算的embeddings更新self.keys
if self.is_train:
self._update_keys_with_embeddings(pre_update_indices, pre_update_embeddings)
# 更新被修改过的key
with torch.no_grad():
self.has_update_keys[pre_update_indices] = 1
return all_best_tokens, all_best_tokens_embeddings
def _update_keys_with_embeddings(self, pre_update_indices, pre_update_embeddings):
# 使用pre_update_embeddings更新self.keys
with torch.no_grad():
pre_update_embeddings = pre_update_embeddings.mean(dim=1) # [337, 512]
pre_update_embeddings = self.to_queries(pre_update_embeddings)
self.keys[pre_update_indices] = pre_update_embeddings
def search_index(self,x):
batch_size, seq_len, dim = x.shape
# collapse sequence dimension by averaging
x_flat = x.mean(dim=1) # [batch_size, dim]
queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
# queries = queries.reshape(batch_size, 2, self.key_dim)
# queries = queries.permute(1, 0, 2)
# 2. 计算queries与keys的相似度
sim = torch.einsum('b d, k d -> b k', queries, self.keys)
# 3. 在两个子空间分别做top-k
scores_and_indices = sim.topk(self.product_key_topk, dim=-1)
scores, indices = scores_and_indices[0], scores_and_indices[1]
# 5. 应用智能分层选择策略
best_tokens, best_tokens_embeddings = self.intelligent_selection(x, scores, indices)
# 6. 更新1%的keys
if self.is_train:
# 获取未更新过的keys的索引
not_updated_indices = torch.where(self.has_update_keys == 0)[0]
# 如果有未更新的keys随机选择num_update_keys个进行更新
if len(not_updated_indices) > 0:
num_update_keys = int(self.knowledge_num * 0.01)
perm = torch.randperm(len(not_updated_indices))[:num_update_keys]
pre_update_indices = not_updated_indices[perm]
pre_update_tokens = self.knowledge_dataset[pre_update_indices]
pre_update_embeddings = self.tok_embeddings(pre_update_tokens.view(-1))
pre_update_embeddings = pre_update_embeddings.view(num_update_keys, self.knowledge_length, -1)
self._update_keys_with_embeddings(pre_update_indices, pre_update_embeddings)
return best_tokens, best_tokens_embeddings
class CrossAttention(nn.Module):
def __init__(
@ -295,6 +256,58 @@ class CrossAttention(nn.Module):
return context
class Attention(nn.Module):
def __init__(self, args: LMConfig):
super().__init__()
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
assert args.n_heads % self.n_kv_heads == 0
self.n_local_heads = args.n_heads
self.n_local_kv_heads = self.n_kv_heads
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
self.attn_dropout = nn.Dropout(args.dropout)
self.resid_dropout = nn.Dropout(args.dropout)
self.dropout = args.dropout
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
mask = torch.triu(mask, diagonal=1)
self.register_buffer("mask", mask, persistent=False)
def forward(self,
x: torch.Tensor,
pos_cis: torch.Tensor):
bsz, seq_len, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
if self.flash and seq_len != 1:
dropout_p = self.dropout if self.training else 0.0
output = F.scaled_dot_product_attention(
xq, xk, xv,
attn_mask=None,
dropout_p=dropout_p,
is_causal=True
)
else:
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
scores += self.mask[:, :, :seq_len, :seq_len]
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
output = scores @ xv
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
output = self.resid_dropout(self.wo(output))
return output
class FeedForward(nn.Module):
def __init__(self, config: LMConfig):
super().__init__()
@ -427,169 +440,30 @@ class MOEFeedForward(nn.Module):
class MiniMindBlock(nn.Module):
def __init__(self, layer_id: int, config: LMConfig):
def __init__(self, layer_id: int, config: LMConfig, knowledge_dataset: KnowledgeDataset):
super().__init__()
self.n_heads = config.n_heads
self.dim = config.dim
self.head_dim = config.dim // config.n_heads
self.attention = Attention(config)
self.cross_att = CrossAttention(config)
self.self_attention = Attention(config)
self.cross_attention = CrossAttention(config)
self.knowledge_dataset = knowledge_dataset
self.layer_id = layer_id
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
# 假设num_experts是已定义的总专家数量的平方根
# 查询生成的参数
# 创建查询生成模块
# if weight_down_embed is not None:
# self.to_queries = nn.Sequential(
# nn.Linear(config.dim, self.dim_key * 2, bias=False),
# # nn.Unflatten(2, (2, self.n_heads, self.dim_key)) # 替代Rearrange
# )
# # 超参数
# self.product_key_topk = min(16, self.num_keys) # 确保不超过num_keys
# self.num_experts_per_head_topk = 1 # 最终每个头选取的专家数
def forward(self, x, db_value, pos_cis):
# import pdb;pdb.set_trace()
# db_value = None
# # 如果有weight_down_embed使用Product Key机制
# if self.weight_down_embed is not None:
# # 1. 生成queries
# batch_size, seq_len, dim = x.shape
# # collapse sequence dimension by averaging
# x_flat = x.mean(dim=1) # [batch_size, dim]
# queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
# queries = queries.reshape(batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
# queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
# # 2. 计算queries与keys的相似度
# sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
# # 3. 在两个子空间分别做top-k
# scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
# scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
# indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
# # 4. 组合两个子空间的分数和索引
# all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
# all_scores = all_scores.view(*all_scores.shape[:-2], -1)
# all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
# all_indices = all_indices.view(*all_indices.shape[:-2], -1)
# # 5. 最终top-k选择
# scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
# indices = all_indices.gather(-1, pk_indices)
# # 6. 从embedding中获取专家值
# # 从embedding中获取值
# flat_indices = indices.view(-1) # 将索引展平为一维张量
# db_values = self.weight_down_embed(flat_indices)
# # 重塑回原始形状
# db_value = db_values.view(batch_size, -1, dim)
# 注意力计算
h_attn = self.attention(
def forward(self, x, pos_cis):
h_attn = self.self_attention(
self.attention_norm(x),
pos_cis,
db_value=db_value
pos_cis
)
h_attn = self.cross_att(h_attn, db_value)
# 残差连接
db, db_embeddings = self.knowledge_dataset.search_index(h_attn)
h_attn = self.cross_attention(h_attn, db_embeddings)
h = x + h_attn
# 前馈神经网络
out = h + self.feed_forward(self.ffn_norm(h))
return out
class ExtractDB(nn.Module):
def __init__(self,params):
# 修改专家数量和知识维度,确保能开方
super().__init__()
self.batch_size = None
self.dim = params.dim
self.dim_key = self.dim // 2
self.knowledge_num = params.knowledge_num # 100专家确保是完全平方数
# 将knowledge_dim设置为与head_dim相同以便在attention中直接使用
self.head_dim = params.dim // params.n_heads
self.knowledge_length = params.knowledge_length
# 使用register_buffer代替nn.Parameter避免梯度问题
# self.register_buffer('weight_down_embed', torch.randn(self.knowledge_num, self.knowledge_length) * 0.02)
self.register_buffer('weight_down_embed',torch.randint(low=0,high=6400, size=(self.knowledge_num, self.knowledge_length),dtype=torch.long))
self.num_keys = int(math.sqrt(self.knowledge_num)) if self.knowledge_num > 0 else 0
self.product_key_topk = min(16, self.num_keys)
self.keys = nn.Parameter(torch.randn(self.num_keys, 2, self.dim_key) * 0.02)
self.num_experts_per_head_topk = 1
self.to_queries = nn.Sequential(
nn.Linear(params.dim, self.dim_key * 2, bias=False),
)
def q_to_k(self,x):
# 1. 生成queries
self.batch_size, seq_len, dim = x.shape
# collapse sequence dimension by averaging
x_flat = x.mean(dim=1) # [batch_size, dim]
queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
queries = queries.reshape(self.batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
# 2. 计算queries与keys的相似度
sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
# 3. 在两个子空间分别做top-k
scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
# 4. 组合两个子空间的分数和索引
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
# 5. 最终top-k选择
scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
indices = all_indices.gather(-1, pk_indices)
flat_indices = indices.view(-1)
return flat_indices
def get_data(self, index):
# 直接从GPU获取embedding
db_values = self.weight_down_embed[index]#变成token了所以是1,后续再过emb
# db_value = db_values.view(self.batch_size,-1)
return db_values
@torch.no_grad()
def updata_value(self, k, v):#要加一个从向量返回index的过程
# 直接更新buffer上的值 (不需要梯度)
v_reshaped = v.view(v.size(0), -1)
# 确保数据类型匹配
v_reshaped = v_reshaped.to(dtype=self.weight_down_embed.dtype)
self.weight_down_embed[k] = v_reshaped
return out
class MiniMindLM(PreTrainedModel):
@ -601,46 +475,15 @@ class MiniMindLM(PreTrainedModel):
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.dropout = nn.Dropout(params.dropout)
# 移除旧的weight_down_embed声明
self.extract_db = ExtractDB(self.params)
# 将self.weight_down_embed传递给每个MiniMindBlock
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
self.knowledge_dataset = KnowledgeDataset(params, self.tok_embeddings)
self.layers = nn.ModuleList([MiniMindBlock(l, params, self.knowledge_dataset) for l in range(self.n_layers)])
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
self.database_output = nn.Linear(params.dim, params.knowledge_length, bias=False)
self.tok_embeddings.weight = self.output.weight
self.database_output.weight = self.output.weight
# Calculate input dimension
input_dim = (self.params.max_seq_len-1)*self.params.n_layers
# Use a bottleneck architecture to reduce parameters
bottleneck_dim = 256 # Significantly smaller bottleneck dimension
# Factorized shared downsampling using two smaller convolutions
self.shared_downsample = nn.Sequential(
# First reduce input dimension to bottleneck
nn.Conv1d(input_dim, bottleneck_dim, kernel_size=1, padding='same'),
nn.ReLU(), # Non-linearity to improve representation capacity
# Then expand to target dimension
nn.Conv1d(bottleneck_dim, 128*8, kernel_size=1, padding='same')
)
# Specific layers for v path
self.downsample_v_specific = nn.Sequential(
nn.Conv1d(128*8, 128, kernel_size=1, padding='same'),
nn.Conv1d(128, self.params.knowledge_length, kernel_size=1, padding='same')
)
# Specific layers for q path
self.downsample_q_specific = nn.Sequential(
nn.Conv1d(128*8, 512, kernel_size=1, padding='same')
)
# 使用实数版本的位置编码,避免复数张量可能导致的段错误
self.register_buffer("pos_cis_real",
precompute_pos_cis_real(dim=params.dim // params.n_heads, theta=params.rope_theta),
self.register_buffer("pos_cis",
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta),
persistent=False)
self.params = params
self.OUT = CausalLMOutputWithPast()
def forward(self,
input_ids: Optional[torch.Tensor] = None,
@ -648,63 +491,12 @@ class MiniMindLM(PreTrainedModel):
**args):
start_pos = args.get('start_pos', 0)
h = self.dropout(self.tok_embeddings(input_ids))
pos_cis_real = self.pos_cis_real[start_pos:start_pos + input_ids.size(1)]
h_list = []
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
for l, layer in enumerate(self.layers):
# 禁用数据库模式,使用固定值替代数据库查询
if self.params.disable_db:
# 创建一个形状为[batch_size, n_layers, dim]的tensor所有元素值为1e-4
batch_size = h.size(0)
db_value = torch.full((batch_size, self.n_layers, self.params.dim), 1e-4,
dtype=h.dtype, device=h.device)
else:
# 正常模式,使用数据库查询
# import pdb;pdb.set_trace()
index = self.extract_db.q_to_k(h)
token_idx = self.extract_db.get_data(index) #这里是index
db_value =self.tok_embeddings(token_idx)
h = layer(
h, db_value, pos_cis_real
h, pos_cis
)
h_list.append(h.unsqueeze(0))
h_tensor = torch.cat(h_list, dim=0).permute(1, 0, 2, 3)
# 只在非禁用数据库模式下执行数据库更新逻辑
if not self.params.disable_db:
# 使用detach()分离计算图,避免多次反向传播
h_tensor_detached = h_tensor.detach()
h_tensor_detached = h_tensor_detached.reshape(h_tensor_detached.shape[0], -1, self.params.dim)
# 数据库更新逻辑与主计算图分离
with torch.no_grad():
# Compute shared downsampling layer once
shared_features = self.shared_downsample(h_tensor_detached)
# Get features from v path - now we output embedding-dimension vectors
z_v_features = self.downsample_v_specific(shared_features)
batch_z, seq_len, dim_z = z_v_features.shape
# Reshape to batch_size * knowledge_length, dim
z_v_flat = z_v_features.reshape(-1, dim_z)
# Direct token prediction - like the main language model head
token_logits = self.database_output(z_v_flat) # [batch_z * seq_len, vocab_size]
# Get token indices directly from logits
token_indices_flat = torch.argmax(token_logits, dim=-1)
token_indices = token_indices_flat.reshape(batch_z, -1)
# Process query path as before
z_q = self.downsample_q_specific(shared_features)
z_k = self.extract_db.q_to_k(z_q)
# self.extract_db.updata_value(z_k, token_indices)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.output(self.norm(h)[:, slice_indices, :])
aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward))
@ -717,12 +509,6 @@ class MiniMindLM(PreTrainedModel):
output.aux_loss = aux_loss
# 尝试添加其他属性(如果支持的话)
# try:
# output.hidden_states = h
# except:
# pass
return output
@torch.inference_mode()
@ -755,13 +541,14 @@ class MiniMindLM(PreTrainedModel):
return res
def _stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, **args):
start, first_seq = input_ids.shape[1], True
start, first_seq, past_kvs = input_ids.shape[1], True, None
while input_ids.shape[1] < max_new_tokens - 1:
if first_seq:
out, first_seq = self(input_ids, **args), False
else:
out = self(input_ids[:, -1:], start_pos=input_ids.shape[1] - 1, **args)
logits = out.logits[:, -1, :]
out = self(input_ids[:, -1:],
start_pos=input_ids.shape[1] - 1, **args)
logits, past_kvs = out.logits[:, -1, :], out.past_key_values
logits[:, list(set(input_ids.tolist()[0]))] /= rp
logits /= (temperature + 1e-9)
if top_p is not None and top_p < 1.0:
@ -777,4 +564,4 @@ class MiniMindLM(PreTrainedModel):
input_ids = torch.cat((input_ids, input_ids_next), dim=1)
yield input_ids[:, start:]
if input_ids_next.item() == eos_token_id:
break
break

View File

@ -74,8 +74,8 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
nn.init.ones_(module.weight)
# 初始化位置编码相关参数
if hasattr(model.extract_db, 'keys'):
nn.init.normal_(model.extract_db.keys, mean=0.0, std=0.02)
if hasattr(model.knowledge_dataset, 'keys'):
nn.init.normal_(model.knowledge_dataset.keys, mean=0.0, std=0.02)
Logger("Default model initialization completed")
@ -434,11 +434,11 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
Logger(f"Failed to save cluster results: {e}")
# 3. 初始化模型的weight_down_embed
if hasattr(model, 'extract_db') and hasattr(model.extract_db, 'weight_down_embed'):
model.extract_db.weight_down_embed.data.copy_(clustered_tensor)
Logger("Successfully initialized model.extract_db.weight_down_embed with clustered data")
if hasattr(model, 'knowledge_dataset') and hasattr(model.knowledge_dataset, 'knowledge_dataset'):
model.knowledge_dataset.knowledge_dataset.data.copy_(clustered_tensor)
Logger("Successfully initialized model.knowledge_dataset.knowledge_dataset with clustered data")
else:
Logger("Warning: Could not find model.extract_db.weight_down_embed to initialize")
Logger("Warning: Could not find model.knowledge_dataset.knowledge_dataset to initialize")
# 存储为全局变量作为备选
globals()['clustered_database'] = clustered_tensor
@ -659,21 +659,21 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
def main():
parser = argparse.ArgumentParser(description="MiniMind Pretraining with Accelerate")
parser.add_argument("--out_dir", type=str, default="out")
parser.add_argument("--epochs", type=int, default=3)
parser.add_argument("--batch_size", type=int, default=24)
parser.add_argument("--epochs", type=int, default=4)
parser.add_argument("--batch_size", type=int, default=48)
parser.add_argument("--learning_rate", type=float, default=2e-4)
parser.add_argument("--dtype", type=str, default="bfloat16")
parser.add_argument("--use_wandb", default=True, action="store_true")
parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain")
parser.add_argument("--num_workers", type=int, default=48)
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--accumulation_steps", type=int, default=32)
parser.add_argument("--grad_clip", type=float, default=1.0)
parser.add_argument("--warmup_iters", type=int, default=0)
parser.add_argument("--log_interval", type=int, default=100)
parser.add_argument("--save_interval", type=int, default=10000)
parser.add_argument('--dim', default=1024, type=int)
parser.add_argument('--n_layers', default=32, type=int)
parser.add_argument('--max_seq_len', default=1024, type=int)
parser.add_argument('--dim', default=512, type=int)
parser.add_argument('--n_layers', default=8, type=int)
parser.add_argument('--max_seq_len', default=512, type=int)
parser.add_argument('--use_moe', default=False, type=bool)
parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能使用固定值1e-4替代")
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl")
@ -681,11 +681,11 @@ def main():
parser.add_argument("--profile", action="store_true", default=True, help="启用性能分析")
parser.add_argument("--profile_interval", type=int, default=10, help="性能分析打印间隔(步数)")
parser.add_argument("--use_flash_attn", action="store_true", default=True, help="启用FlashAttention")
parser.add_argument("--knowledge_num", type=int, default=65536,help="知识库的数据数目")
parser.add_argument("--knowledge_length", type=int, default=64,help="知识库的句子长度")
parser.add_argument("--knowledge_num", type=int, default=4096,help="知识库的数据数目")
parser.add_argument("--knowledge_length", type=int, default=16,help="知识库的句子长度")
parser.add_argument("--database_init_path", type=str, default="./dataset/database_init.json", help="数据库初始化路径")
parser.add_argument("--fast_clustering", action="store_true", default=True, help="使用快速近似聚类算法(适用于大数据集)")
parser.add_argument("--cluster_cache_path", type=str, default="./cache/cluster_tokens.pt", help="聚类结果缓存文件路径")
parser.add_argument("--cluster_cache_path", type=str, default="./cache/cluster_tokens_single.pt", help="聚类结果缓存文件路径")
parser.add_argument("--recompute_clusters", action="store_true", default=False, help="强制重新计算聚类,忽略缓存文件")
args = parser.parse_args()