添加了wandb

This commit is contained in:
Yu Chengzhang 2024-09-23 20:11:45 +08:00
parent 0fa4d17d26
commit 06a66d88c9
6 changed files with 52 additions and 7 deletions

4
.gitignore vendored
View File

@ -1,2 +1,4 @@
/model/__pycache__
/dataset
/dataset
/wandb
/out

View File

@ -37,7 +37,7 @@ def get_lr(it, all):
return min_lr + coeff * (learning_rate - min_lr)
def train_epoch(epoch, accumulation_steps=8):
def train_epoch(epoch, wandb, accumulation_steps=8):
start_time = time.time()
for step, (X, Y) in enumerate(train_loader):
X = X.to(device)
@ -73,6 +73,10 @@ def train_epoch(epoch, accumulation_steps=8):
loss.item() * accumulation_steps,
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
if wandb != None:
wandb.log({"loss": loss.item() * accumulation_steps,
"lr": optimizer.param_groups[-1]['lr'],
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
if (step + 1) % 1000 == 0 and (not ddp or dist.get_rank() == 0):
model.eval()
@ -138,6 +142,17 @@ if __name__ == "__main__":
tokens_per_iter = batch_size * max_seq_len
torch.manual_seed(1337)
device_type = device if "cuda" in device else "cpu"
use_wandb = True #是否使用wandb
wandb_project = "MiniMind-Pretrain"
wandb_run_name = f"MiniMind-Pretrain-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}"
if use_wandb:
import wandb
wandb.init(project=wandb_project, name=wandb_run_name)
else:
wandb = None
ctx = (
nullcontext()
if device_type == "cpu"
@ -186,4 +201,4 @@ if __name__ == "__main__":
# training loop
iter_per_epoch = len(train_loader)
for epoch in range(epochs):
train_epoch(epoch)
train_epoch(epoch, wandb)

View File

@ -43,7 +43,7 @@ def get_lr(it, all):
# ------------------------------------------------------------------------------
def train_epoch(epoch):
def train_epoch(epoch, wandb):
start_time = time.time()
for step, (X, Y, loss_mask) in enumerate(train_loader):
X = X.to(device)
@ -85,6 +85,9 @@ def train_epoch(epoch):
loss,
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
if use_wandb != None:
wandb.log({"loss": loss, "lr": optimizer.param_groups[-1]['lr'],
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
if (step + 1) % 1000 == 0 and (not ddp or dist.get_rank() == 0):
model.eval()
@ -157,6 +160,16 @@ if __name__ == "__main__":
os.makedirs(out_dir, exist_ok=True)
torch.manual_seed(1337)
device_type = device if "cuda" in device else "cpu"
use_wandb = True #是否使用wandb
wandb_project = "MiniMind-Full-SFT"
wandb_run_name = f"MiniMind-Full-SFT-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}"
if use_wandb:
import wandb
wandb.init(project=wandb_project, name=wandb_run_name)
else:
wandb = None
ctx = (
nullcontext()
if device_type == "cpu"
@ -206,5 +219,5 @@ if __name__ == "__main__":
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
# training loop
for epoch in range(epochs):
for epoch in range(epochs,wandb):
train_epoch(epoch)

View File

@ -35,7 +35,7 @@ def get_lr(it):
# ------------------------------------------------------------------------------
def train_epoch(epoch):
def train_epoch(epoch, wandb):
start_time = time.time()
for step, (X, Y, loss_mask) in enumerate(train_loader):
X = X.to(device)
@ -72,6 +72,9 @@ def train_epoch(epoch):
loss.item(),
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
if use_wandb != None:
wandb.log({"loss": loss.item(), "lr": optimizer.param_groups[-1]['lr'],
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
def find_all_linear_names(model):
@ -127,6 +130,16 @@ if __name__ == "__main__":
os.makedirs(out_dir, exist_ok=True)
torch.manual_seed(1337)
device_type = device if "cuda" in device else "cpu"
use_wandb = True #是否使用wandb
wandb_project = "MiniMind-LoRA"
wandb_run_name = f"MiniMind-LoRA-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}"
if use_wandb:
import wandb
wandb.init(project=wandb_project, name=wandb_run_name)
else:
wandb = None
ctx = (
nullcontext()
if device_type == "cpu"
@ -162,5 +175,5 @@ if __name__ == "__main__":
raw_model = model
# training loop
for epoch in range(epochs):
train_epoch(epoch)
train_epoch(epoch, wandb)
model.save_pretrained('minimind')

View File

@ -72,6 +72,7 @@ https://github.com/user-attachments/assets/88b98128-636e-43bc-a419-b1b1403c2055
- 训练支持单机单卡、单机多卡(DDP、DeepSpeed)训练。训练过程中支持在任意位置停止,及在任意位置继续训练。
- 在Ceval数据集上进行模型测试的代码。
- 实现Openai-Api基本的chat接口便于集成到第三方ChatUI使用FastGPT、Open-WebUI等
- 使用wandb可视化训练流程。
希望此开源项目可以帮助LLM初学者快速入门

View File

@ -81,6 +81,7 @@ The project includes:
- Code for testing the model on the Ceval dataset.
- Implementation of a basic chat interface compatible with OpenAI's API, facilitating integration into third-party Chat
UIs (such as FastGPT, Open-WebUI, etc.).
- Use wandb to visualize the training process.
We hope this open-source project helps LLM beginners get started quickly!