数据库实现语义相关性优先 + 动态平衡

This commit is contained in:
iomgaa 2025-05-29 23:59:08 +08:00
parent 64e92473c3
commit 0b53e1b951
2 changed files with 200 additions and 90 deletions

View File

@ -1,5 +1,5 @@
from transformers import PretrainedConfig from transformers import PretrainedConfig
from typing import List from typing import List, Optional, Union
class LMConfig(PretrainedConfig): class LMConfig(PretrainedConfig):
@ -12,17 +12,22 @@ class LMConfig(PretrainedConfig):
n_heads: int = 32, n_heads: int = 32,
n_kv_heads: int = 8, n_kv_heads: int = 8,
vocab_size: int = 6400, vocab_size: int = 6400,
hidden_dim: int = None, hidden_dim: Optional[int] = None,
multiple_of: int = 64, multiple_of: int = 64,
norm_eps: float = 1e-5, norm_eps: float = 1e-5,
max_seq_len: int = 8192, max_seq_len: int = 8192,
rope_theta: int = 1e6, rope_theta: float = 1e6,
dropout: float = 0.0, dropout: float = 0.0,
flash_attn: bool = True, flash_attn: bool = True,
#################################################### ####################################################
# DB related configurations # DB related configurations
#################################################### ####################################################
disable_db: bool = False, # 特殊模式:禁用数据库功能 disable_db: bool = False, # 特殊模式:禁用数据库功能
db_intelligent_balance: bool = True, # 是否启用智能负载均衡
db_relevance_threshold: float = 0.7, # 相关性阈值(第一层过滤)
db_balance_strength: float = 0.3, # 平衡权重的基础值
db_momentum: float = 0.9, # 使用频率统计的动量
db_adaptive_weights: bool = True, # 是否启用动态权重调整
#################################################### ####################################################
# Here are the specific configurations of MOE # Here are the specific configurations of MOE
# When use_moe is false, the following is invalid # When use_moe is false, the following is invalid
@ -57,6 +62,11 @@ class LMConfig(PretrainedConfig):
# DB related configurations # DB related configurations
#################################################### ####################################################
self.disable_db = disable_db # 设置是否禁用数据库 self.disable_db = disable_db # 设置是否禁用数据库
self.db_intelligent_balance = db_intelligent_balance # 是否启用智能负载均衡
self.db_relevance_threshold = db_relevance_threshold # 相关性阈值(第一层过滤)
self.db_balance_strength = db_balance_strength # 平衡权重的基础值
self.db_momentum = db_momentum # 使用频率统计的动量
self.db_adaptive_weights = db_adaptive_weights # 是否启用动态权重调整
#################################################### ####################################################
# Here are the specific configurations of MOE # Here are the specific configurations of MOE
# When use_moe is false, the following is invalid # When use_moe is false, the following is invalid

View File

@ -188,11 +188,6 @@ class Attention(nn.Module):
# 应用旋转位置编码(使用实数版本) # 应用旋转位置编码(使用实数版本)
xq, xk = apply_rotary_emb_real(xq, xk, pos_cis) xq, xk = apply_rotary_emb_real(xq, xk, pos_cis)
# kv_cache实现 REMOVED
# if past_key_value is not None:
# xk = torch.cat([past_key_value[0], xk], dim=1)
# xv = torch.cat([past_key_value[1], xv], dim=1)
# past_kv = (xk, xv) if use_cache else None
# 重复键值对 # 重复键值对
xq, xk, xv = ( xq, xk, xv = (
@ -440,66 +435,7 @@ class MiniMindBlock(nn.Module):
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps) self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config) self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
# 假设num_experts是已定义的总专家数量的平方根
# 查询生成的参数
# 创建查询生成模块
# if weight_down_embed is not None:
# self.to_queries = nn.Sequential(
# nn.Linear(config.dim, self.dim_key * 2, bias=False),
# # nn.Unflatten(2, (2, self.n_heads, self.dim_key)) # 替代Rearrange
# )
# # 超参数
# self.product_key_topk = min(16, self.num_keys) # 确保不超过num_keys
# self.num_experts_per_head_topk = 1 # 最终每个头选取的专家数
def forward(self, x, db_value, pos_cis): def forward(self, x, db_value, pos_cis):
# import pdb;pdb.set_trace()
# db_value = None
# # 如果有weight_down_embed使用Product Key机制
# if self.weight_down_embed is not None:
# # 1. 生成queries
# batch_size, seq_len, dim = x.shape
# # collapse sequence dimension by averaging
# x_flat = x.mean(dim=1) # [batch_size, dim]
# queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
# queries = queries.reshape(batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
# queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
# # 2. 计算queries与keys的相似度
# sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
# # 3. 在两个子空间分别做top-k
# scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
# scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
# indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
# # 4. 组合两个子空间的分数和索引
# all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
# all_scores = all_scores.view(*all_scores.shape[:-2], -1)
# all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
# all_indices = all_indices.view(*all_indices.shape[:-2], -1)
# # 5. 最终top-k选择
# scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
# indices = all_indices.gather(-1, pk_indices)
# # 6. 从embedding中获取专家值
# # 从embedding中获取值
# flat_indices = indices.view(-1) # 将索引展平为一维张量
# db_values = self.weight_down_embed(flat_indices)
# # 重塑回原始形状
# db_value = db_values.view(batch_size, -1, dim)
# 注意力计算 # 注意力计算
h_attn = self.attention( h_attn = self.attention(
@ -518,7 +454,7 @@ class MiniMindBlock(nn.Module):
return out return out
class ExtractDB(nn.Module): class ExtractDB(nn.Module):
def __init__(self,params): def __init__(self, params, tok_embeddings=None):
# 修改专家数量和知识维度,确保能开方 # 修改专家数量和知识维度,确保能开方
super().__init__() super().__init__()
self.batch_size = None self.batch_size = None
@ -529,12 +465,27 @@ class ExtractDB(nn.Module):
self.head_dim = params.dim // params.n_heads self.head_dim = params.dim // params.n_heads
self.knowledge_length = params.knowledge_length self.knowledge_length = params.knowledge_length
# 使用register_buffer代替nn.Parameter避免梯度问题 # 智能负载均衡相关参数
# self.register_buffer('weight_down_embed', torch.randn(self.knowledge_num, self.knowledge_length) * 0.02) self.enable_intelligent_balance = getattr(params, 'db_intelligent_balance', True)
self.register_buffer('weight_down_embed',torch.randint(low=0,high=6400, size=(self.knowledge_num, self.knowledge_length),dtype=torch.long)) self.relevance_threshold = getattr(params, 'db_relevance_threshold', 0.7)
self.base_balance_strength = getattr(params, 'db_balance_strength', 0.3)
self.momentum = getattr(params, 'db_momentum', 0.9)
self.adaptive_weights = getattr(params, 'db_adaptive_weights', True)
# 动态权重调整参数
self.current_relevance_weight = 0.8 # 开始时更重视相关性
self.current_balance_weight = 0.2
self.weight_update_frequency = 100 # 每100步调整一次权重
self.step_counter = 0
# 使用频率统计 - 使用register_buffer以便在GPU/CPU间正确移动
self.register_buffer('usage_counts', torch.zeros(self.knowledge_num))
self.register_buffer('total_queries', torch.tensor(0.0))
# 知识库存储 - 使用register_buffer因为这是整数索引不需要梯度
self.register_buffer('weight_down_embed',
torch.randint(low=0, high=6400, size=(self.knowledge_num, self.knowledge_length), dtype=torch.long)
)
self.num_keys = int(math.sqrt(self.knowledge_num)) if self.knowledge_num > 0 else 0 self.num_keys = int(math.sqrt(self.knowledge_num)) if self.knowledge_num > 0 else 0
self.product_key_topk = min(16, self.num_keys) self.product_key_topk = min(16, self.num_keys)
@ -543,7 +494,153 @@ class ExtractDB(nn.Module):
self.to_queries = nn.Sequential( self.to_queries = nn.Sequential(
nn.Linear(params.dim, self.dim_key * 2, bias=False), nn.Linear(params.dim, self.dim_key * 2, bias=False),
) )
# 存储token embeddings的引用用于计算真实的语义相关性
self.tok_embeddings = tok_embeddings
def update_usage_statistics(self, selected_indices):
"""更新数据库条目的使用统计"""
if not self.training or not self.enable_intelligent_balance:
return
with torch.no_grad():
# 统计当前batch中每个条目的使用次数
batch_usage = torch.zeros(self.knowledge_num, device=selected_indices.device)
unique_indices, counts = torch.unique(selected_indices, return_counts=True)
batch_usage[unique_indices] = counts.float()
# 使用简单的tensor操作来更新统计
current_usage = self.usage_counts.clone()
current_total = self.total_queries.clone()
new_usage = self.momentum * current_usage + (1 - self.momentum) * batch_usage
new_total = current_total + selected_indices.numel()
# 直接替换buffer内容
self.usage_counts.copy_(new_usage)
self.total_queries.copy_(new_total)
def update_dynamic_weights(self):
"""动态调整相关性和平衡权重"""
if not self.adaptive_weights or not self.training:
return
self.step_counter += 1
# 每隔一定步数调整权重
if self.step_counter % self.weight_update_frequency == 0:
with torch.no_grad():
if self.total_queries > 0:
# 计算使用分布的方差(不平衡程度)
usage_rates = self.usage_counts / self.total_queries
usage_variance = usage_rates.var().item()
# 根据不平衡程度调整权重
if usage_variance > 0.01: # 高度不平衡
self.current_relevance_weight = max(0.5, self.current_relevance_weight - 0.1)
self.current_balance_weight = min(0.5, self.current_balance_weight + 0.1)
elif usage_variance < 0.001: # 已经很平衡
self.current_relevance_weight = min(0.9, self.current_relevance_weight + 0.1)
self.current_balance_weight = max(0.1, self.current_balance_weight - 0.1)
# 确保权重和为1
total_weight = self.current_relevance_weight + self.current_balance_weight
self.current_relevance_weight /= total_weight
self.current_balance_weight /= total_weight
def intelligent_selection(self, query, all_scores, all_indices):
"""智能分层选择策略"""
if not self.enable_intelligent_balance or not self.training:
# 如果禁用智能平衡或在推理模式,使用原始分数
return all_scores
with torch.no_grad():
batch_size = all_scores.size(0)
device = all_scores.device
dtype = all_scores.dtype
# 更新动态权重
self.update_dynamic_weights()
# 对每个batch进行分层选择
enhanced_scores = all_scores.clone()
# 预先计算query的特征表示取平均
query_features = query.mean(dim=1) # [batch_size, dim]
for batch_idx in range(batch_size):
indices = all_indices[batch_idx] # 当前batch的候选条目
scores = all_scores[batch_idx] # 当前batch的原始分数
# 第一层基于value内容计算真正的相关性
# 1. 获取候选条目的value tokens只获取当前需要的
candidate_tokens = self.weight_down_embed[indices] # [num_candidates, knowledge_length]
# 2. 高效计算直接使用embedding层避免中间变量
# 将tokens reshape为一维批量计算embeddings然后reshape回来
num_candidates, knowledge_length = candidate_tokens.shape
flat_tokens = candidate_tokens.view(-1) # [num_candidates * knowledge_length]
# 批量计算所有token的embeddings
flat_embeddings = self.tok_embeddings(flat_tokens) # [num_candidates * knowledge_length, dim]
# Reshape回原始形状并进行mean pooling
candidate_embeddings = flat_embeddings.view(num_candidates, knowledge_length, -1)
candidate_features = candidate_embeddings.mean(dim=1) # [num_candidates, dim]
# 3. 计算query与候选条目的相似度
query_feature = query_features[batch_idx] # [dim]
similarity_scores = F.cosine_similarity(
query_feature.unsqueeze(0), candidate_features, dim=1
) # [num_candidates]
# 4. 将相似度分数归一化为概率分布
relevance_probs = F.softmax(similarity_scores.float(), dim=-1).to(dtype)
# 相关性阈值:选择概率大于某个阈值的候选项
# 动态阈值:如果所有候选项的相似度都很平均,降低阈值
mean_prob = relevance_probs.mean()
adaptive_threshold = max(self.relevance_threshold * mean_prob, mean_prob * 0.5)
relevant_mask = relevance_probs > adaptive_threshold
if relevant_mask.sum() == 0:
# 如果没有足够相关的选择相似度最高的top-k
top_k = min(5, len(indices))
_, top_indices = similarity_scores.topk(top_k)
relevant_mask = torch.zeros_like(relevant_mask, dtype=torch.bool)
relevant_mask[top_indices] = True
# 第二层:在相关候选中应用平衡策略
if relevant_mask.sum() > 1:
# 计算平衡分数(使用频率低的分数高)
relevant_indices = indices[relevant_mask]
relevant_usage = self.usage_counts[relevant_indices]
# 平衡分数使用频率的倒数加1避免除零
balance_scores = 1.0 / (relevant_usage + 1.0)
balance_scores = balance_scores / (balance_scores.sum() + 1e-8)
# 相关性分数(基于真实的语义相似度)
relevant_rel_scores = relevance_probs[relevant_mask]
relevant_rel_scores = relevant_rel_scores / (relevant_rel_scores.sum() + 1e-8)
# 综合分数:动态权重组合
combined_scores = (self.current_relevance_weight * relevant_rel_scores +
self.current_balance_weight * balance_scores.to(dtype))
# 确保数据类型一致
adjustment = self.base_balance_strength * combined_scores.to(dtype)
# 将综合分数应用到enhanced_scores
enhanced_scores[batch_idx, relevant_mask] = (
scores[relevant_mask] + adjustment
)
# 清理中间变量,释放显存
del candidate_tokens, flat_tokens, flat_embeddings, candidate_embeddings, candidate_features
return enhanced_scores.to(device)
def q_to_k(self,x): def q_to_k(self,x):
# 1. 生成queries # 1. 生成queries
self.batch_size, seq_len, dim = x.shape self.batch_size, seq_len, dim = x.shape
@ -570,10 +667,17 @@ class ExtractDB(nn.Module):
all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2) all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
all_indices = all_indices.view(*all_indices.shape[:-2], -1) all_indices = all_indices.view(*all_indices.shape[:-2], -1)
# 5. 最终top-k选择 # 5. 应用智能分层选择策略
scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1) enhanced_scores = self.intelligent_selection(x, all_scores, all_indices)
# 6. 基于增强后的分数进行最终top-k选择
scores, pk_indices = enhanced_scores.topk(self.num_experts_per_head_topk, dim=-1)
indices = all_indices.gather(-1, pk_indices) indices = all_indices.gather(-1, pk_indices)
flat_indices = indices.view(-1) flat_indices = indices.view(-1)
# 7. 更新使用统计
self.update_usage_statistics(flat_indices)
return flat_indices return flat_indices
def get_data(self, index): def get_data(self, index):
@ -599,10 +703,13 @@ class MiniMindLM(PreTrainedModel):
self.params = params or LMConfig() self.params = params or LMConfig()
super().__init__(self.params) super().__init__(self.params)
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
# 先创建token embeddings
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim) self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.dropout = nn.Dropout(params.dropout) self.dropout = nn.Dropout(params.dropout)
# 移除旧的weight_down_embed声明
self.extract_db = ExtractDB(self.params) # 创建ExtractDB传入tok_embeddings引用
self.extract_db = ExtractDB(self.params, self.tok_embeddings)
# 将self.weight_down_embed传递给每个MiniMindBlock # 将self.weight_down_embed传递给每个MiniMindBlock
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)]) self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
@ -652,20 +759,13 @@ class MiniMindLM(PreTrainedModel):
h_list = [] h_list = []
for l, layer in enumerate(self.layers): for l, layer in enumerate(self.layers):
# 禁用数据库模式,使用固定值替代数据库查询 # 正常模式,使用数据库查询
if self.params.disable_db: # import pdb;pdb.set_trace()
# 创建一个形状为[batch_size, n_layers, dim]的tensor所有元素值为1e-4 index = self.extract_db.q_to_k(h)
batch_size = h.size(0)
db_value = torch.full((batch_size, self.n_layers, self.params.dim), 1e-4,
dtype=h.dtype, device=h.device)
else:
# 正常模式,使用数据库查询
# import pdb;pdb.set_trace()
index = self.extract_db.q_to_k(h)
token_idx = self.extract_db.get_data(index) #这里是index token_idx = self.extract_db.get_data(index) #这里是index
db_value =self.tok_embeddings(token_idx) db_value =self.tok_embeddings(token_idx)
h = layer( h = layer(
h, db_value, pos_cis_real h, db_value, pos_cis_real