diff --git a/model/model.py b/model/model.py index 182f58b..3dc48b2 100644 --- a/model/model.py +++ b/model/model.py @@ -173,31 +173,42 @@ class CrossAttention(nn.Module): ): super().__init__() self.config = config + self.num_heads = 8 + self.head_dim = 768 // self.num_heads self.to_q = nn.Linear(768, 768, bias=False) self.to_k = nn.Linear(768, 768, bias=False) self.to_v = nn.Linear(768, 768, bias=False) - + + self.to_out = nn.Linear(768, 768, bias=False) def forward(self, x, db, context_mask=None, pos_emb=None): - # db = db.permute(0, 2, 1) - - q = self.to_q(x) - k = self.to_k(db) - v = self.to_v(db) + batch_size = x.size(0) + + # 分离多头 + q = self.to_q(x).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) + k = self.to_k(db).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) + v = self.to_v(db).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) if pos_emb is not None: + pos_emb = pos_emb.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2) q = q + pos_emb k = k + pos_emb v = v + pos_emb - attn_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(k.size(-1)) + attn_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim) if context_mask is not None: - attn_scores = attn_scores.masked_fill(context_mask == 0, -1e10) + expanded_mask = context_mask.unsqueeze(1).expand(-1, self.num_heads, -1, -1) + attn_scores = attn_scores.masked_fill(expanded_mask == 0, -1e10) attn_weights = F.softmax(attn_scores, dim=-1) + context = torch.matmul(attn_weights, v) + context = context.transpose(1, 2).contiguous().view(batch_size, -1, 768) + + context = self.to_out(context) + return context class FeedForward(nn.Module): diff --git a/train_embedding.py b/train_embedding.py new file mode 100644 index 0000000..7a4493d --- /dev/null +++ b/train_embedding.py @@ -0,0 +1,418 @@ +import os +# 设置环境变量 +os.environ["WANDB_MODE"] = "offline" # 或者使用 "dryrun" +import platform +import argparse +import time +import math +import warnings +import pandas as pd +import torch +import torch.distributed as dist +from torch import optim, nn +from torch.nn.parallel import DistributedDataParallel +from torch.optim.lr_scheduler import CosineAnnealingLR +from torch.utils.data import DataLoader, DistributedSampler, Dataset +from contextlib import nullcontext +import random +import numpy as np +import json + +from transformers import AutoTokenizer + +# Removed: from model.model import MiniMindLM +from model.LMConfig import LMConfig +# from model.dataset import PretrainDataset + +warnings.filterwarnings('ignore') + + +# Define a Word2Vec-style CBOW model +class CBOWModel(nn.Module): + def __init__(self, config: LMConfig): + super().__init__() + self.vocab_size = config.vocab_size + self.embedding_dim = config.dim + + # Input embeddings (context words) + self.embeddings = nn.Embedding(config.vocab_size, config.dim) + + # Output weights for target prediction + self.output_weights = nn.Linear(config.dim, config.vocab_size, bias=False) + + # Initialize weights + self.init_weights() + + def init_weights(self): + # Xavier initialization for better convergence + nn.init.xavier_uniform_(self.embeddings.weight) + nn.init.xavier_uniform_(self.output_weights.weight) + + def forward(self, context_words): + # context_words shape: [batch_size, context_size],context_size可变 + + # Get embeddings for all context words + embeds = self.embeddings(context_words) # [batch_size, context_size, embedding_dim] + + # Average the context word embeddings along context dimension + embeds = torch.mean(embeds, dim=1) # [batch_size, embedding_dim] + + # Predict the target word + output = self.output_weights(embeds) # [batch_size, vocab_size] + + return output + + +# Word2Vec CBOW dataset +class CBOWDataset(Dataset): + def __init__(self, data_path, tokenizer, max_length=512, window_size=5): + super().__init__() + self.tokenizer = tokenizer + self.window_size = window_size + self.max_length = max_length + self.samples = self.load_data(data_path) + + def load_data(self, path): + samples = [] + with open(path, 'r', encoding='utf-8') as f: + for line_num, line in enumerate(f, 1): + data = json.loads(line.strip()) + samples.append(data) + return samples + + def __len__(self): + return len(self.samples) + + def __getitem__(self, index): + sample = self.samples[index] + + # 构建输入文本 + text = f"{self.tokenizer.bos_token}{str(sample['text'])}{self.tokenizer.eos_token}" + encoding = self.tokenizer( + text, + max_length=self.max_length, + padding='max_length', + truncation=True, + return_tensors='pt' + ) + + # 获取token ids + input_ids = encoding.input_ids.squeeze() + # 过滤掉padding + attention_mask = encoding.attention_mask.squeeze() + valid_indices = torch.where(attention_mask == 1)[0] + valid_input_ids = input_ids[valid_indices] + + # 确保有足够的token进行CBOW训练 + if len(valid_input_ids) <= 2 * self.window_size + 1: + # 如果token不足,随机选择一个不同的样本 + return self.__getitem__(random.randint(0, len(self.samples) - 1)) + + # 随机选择一个中心位置(不包括首尾的特殊token) + # 确保中心位置两边都有至少window_size个token + min_center_pos = self.window_size + 1 # 避开起始token + max_center_pos = len(valid_input_ids) - self.window_size - 1 # 避开结束token + + if max_center_pos <= min_center_pos: + return self.__getitem__(random.randint(0, len(self.samples) - 1)) + + center_pos = random.randint(min_center_pos, max_center_pos) + + # 目标词(中心词) + target = valid_input_ids[center_pos].unsqueeze(0) + + # 上下文词(中心词前后的词) + context = torch.cat([ + valid_input_ids[center_pos - self.window_size:center_pos], + valid_input_ids[center_pos + 1:center_pos + self.window_size + 1] + ]) + + return context, target + + +def Logger(content): + # 如果没有使用ddp或者ddp的主设备,那么就打印 + if not ddp or dist.get_rank() == 0: + print(content) + + +def get_lr(current_step, total_steps, lr): + # 更新学习率 + # \text{get\_lr}(c, t, l) = \frac{l}{10} + 0.5 \cdot l \cdot \left(1 + \cos\left(\frac{\pi \cdot c}{t}\right)\right) + return lr / 10 + 0.5 * lr * (1 + math.cos(math.pi * current_step / total_steps)) + + +def train_epoch(epoch, wandb): + loss_fct = nn.CrossEntropyLoss() + start_time = time.time() + total_loss = 0 + total_samples = 0 + + for step, (context, target) in enumerate(train_loader): + try: + # 将数据加载到设备上 + context = context.to(args.device) + target = target.to(args.device) + + # 更新学习率 + lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch, args.learning_rate) + for param_group in optimizer.param_groups: + param_group['lr'] = lr + + with ctx: + # Forward pass + logits = model(context) # [batch_size, vocab_size] + # target是[batch_size, 1],需要squeeze成[batch_size]来匹配CrossEntropyLoss的预期 + loss = loss_fct(logits, target.squeeze()) + loss = loss / args.accumulation_steps + + # Print data types for debugging + if step == 0 and (not ddp or dist.get_rank() == 0): + Logger("---- Data Type Check ----") + Logger(f"context.dtype: {context.dtype}") + Logger(f"context.shape: {context.shape}") + Logger(f"target.dtype: {target.dtype}") + Logger(f"target.shape: {target.shape}") + if hasattr(model, 'module'): # DDP case + Logger(f"Model parameter dtype: {next(model.module.parameters()).dtype}") + else: # Non-DDP case + Logger(f"Model parameter dtype: {next(model.parameters()).dtype}") + Logger(f"logits.dtype: {logits.dtype}") + Logger(f"logits.shape: {logits.shape}") + Logger(f"loss.dtype: {loss.dtype}") + Logger("-------------------------") + + scaler.scale(loss).backward() + + if (step + 1) % args.accumulation_steps == 0: + scaler.unscale_(optimizer) + torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip) + + scaler.step(optimizer) + scaler.update() + + optimizer.zero_grad(set_to_none=True) + + total_loss += loss.item() * args.accumulation_steps + total_samples += 1 + + # 打印日志 + if step % args.log_interval == 0: + spend_time = time.time() - start_time + avg_loss = total_loss / total_samples if total_samples > 0 else 0 + Logger( + 'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.12f} epoch_Time:{}min:'.format( + epoch + 1, + args.epochs, + step, + iter_per_epoch, + avg_loss, + optimizer.param_groups[-1]['lr'], + spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60)) + + if (wandb is not None) and (not ddp or dist.get_rank() == 0): + wandb.log({"loss": avg_loss, + "lr": optimizer.param_groups[-1]['lr'], + "epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60}) + + except Exception as e: + print(f"Error occurred: {str(e)}") + import traceback + traceback.print_exc() + # Modified checkpoint path for error + save_path = f'{args.save_dir}/word2vec_embedding_dim{lm_config.dim}_vocab{lm_config.vocab_size}_ERROR.pth' + if os.path.exists(save_path): + os.remove(save_path) + + if isinstance(model, torch.nn.parallel.DistributedDataParallel): + state_dict = model.module.embeddings.state_dict() + else: + state_dict = model.embeddings.state_dict() + torch.save(state_dict, save_path) + + for name, param in model.named_parameters(): + if param.grad is not None and torch.isnan(param.grad).any(): + print(f"NaN gradient in parameter: {name}") + + for name, param in model.named_parameters(): + if param.grad is not None and torch.isnan(param.grad).any(): + print(f"Parameter {name} values: {param.data}") + print(f"Parameter {name} gradients: {param.grad}") + + raise ValueError("NaN gradient detected") + + # Save model once at the end of each epoch + if not ddp or dist.get_rank() == 0: + model.eval() + ckp = f'{args.save_dir}/word2vec_embedding_dim{lm_config.dim}_vocab{lm_config.vocab_size}_epoch{epoch+1}.pth' + + if isinstance(model, torch.nn.parallel.DistributedDataParallel): + embedding_state_dict = model.module.embeddings.state_dict() + else: + embedding_state_dict = model.embeddings.state_dict() + + torch.save(embedding_state_dict, ckp) + Logger(f"Saved word2vec embedding for epoch {epoch+1} to {ckp}") + model.train() + + +def init_model(lm_config_params: LMConfig): + # 加载tokenizer + tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer') + # Update vocab_size in lm_config if tokenizer has a different one + if tokenizer.vocab_size != lm_config_params.vocab_size: + Logger(f"Updating lm_config.vocab_size from {lm_config_params.vocab_size} to {tokenizer.vocab_size} based on tokenizer.") + lm_config_params.vocab_size = tokenizer.vocab_size + + # 加载word2vec CBOW模型 + model = CBOWModel(lm_config_params).to(args.device) + # 打印模型参数 + Logger(f'CBOW Model total parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} Million') + return model, tokenizer + + +def init_distributed_mode(): + if not ddp: return #如果没有启用分布式数据并行(DDP),直接返回,不执行任何操作。 + global ddp_local_rank, DEVICE #声明这两个变量为全局变量,以便在函数外部也能访问它们。 + + dist.init_process_group(backend="nccl") #初始化分布式进程组,使用NCCL后端(NVIDIA Collective Communications Library),这是NVIDIA GPU之间通信的优化库。 + ddp_rank = int(os.environ["RANK"]) #从环境变量获取当前进程的全局编号。 + ddp_local_rank = int(os.environ["LOCAL_RANK"]) #从环境变量获取当前进程的本地编号。 + ddp_world_size = int(os.environ["WORLD_SIZE"]) #从环境变量获取当前进程组中的进程总数。 + DEVICE = f"cuda:{ddp_local_rank}" #根据本地编号选择GPU设备。 + torch.cuda.set_device(DEVICE) #设置当前进程的GPU设备。 + + +# torchrun --nproc_per_node 2 train_embedding.py +if __name__ == "__main__": + parser = argparse.ArgumentParser(description="MiniMind Word2Vec Embedding Training") + parser.add_argument("--out_dir", type=str, default="out_word2vec") + parser.add_argument("--epochs", type=int, default=3) + parser.add_argument("--batch_size", type=int, default=256) + parser.add_argument("--learning_rate", type=float, default=5e-4) + parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu") + parser.add_argument("--dtype", type=str, default="bfloat16") + parser.add_argument("--use_wandb", default=False, action="store_true") + parser.add_argument("--wandb_project", type=str, default="MiniMind-Word2Vec-Training") + parser.add_argument("--num_workers", type=int, default=32) + parser.add_argument("--ddp", action="store_true") + parser.add_argument("--accumulation_steps", type=int, default=8) + parser.add_argument("--grad_clip", type=float, default=1.0) + parser.add_argument("--log_interval", type=int, default=100) + parser.add_argument("--save_interval", type=int, default=100) + parser.add_argument('--local_rank', type=int, default=-1) + parser.add_argument('--dim', default=768, type=int) + parser.add_argument('--max_seq_len', default=512, type=int) + parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") + parser.add_argument('--vocab_size', default=6400, type=int) + parser.add_argument('--window_size', default=5, type=int) + + + args = parser.parse_args() + + # Create LMConfig with relevant parameters for embedding + lm_config = LMConfig( + dim=args.dim, + vocab_size=args.vocab_size, # Will be updated by tokenizer + max_seq_len=args.max_seq_len, + n_layers=1, # Minimal + n_heads=1, # Minimal + n_kv_heads=1 #Minimal + ) + args.save_dir = os.path.join(args.out_dir) + os.makedirs(args.save_dir, exist_ok=True) + os.makedirs(args.out_dir, exist_ok=True) + tokens_per_iter = args.batch_size * lm_config.max_seq_len + print(f"tokens_per_iter: {tokens_per_iter}") + device_type = "cuda" if "cuda" in args.device else "cpu" + + # Determine the torch dtype + pt_dtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[args.dtype] + + args.wandb_run_name = f"MiniMind-Word2Vec-Dim-{args.dim}-Vocab-{lm_config.vocab_size}-Window-{args.window_size}" + + ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast(dtype=pt_dtype) + + ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run? + ddp_local_rank, DEVICE = 0, "cuda:0" # Default values, will be overwritten in DDP + + base_seed = 1337 + torch.manual_seed(base_seed) + torch.cuda.manual_seed(base_seed) + + if ddp: + init_distributed_mode() # This sets DEVICE and ddp_local_rank + args.device = torch.device(DEVICE) # Ensure args.device is updated + rank = dist.get_rank() + torch.manual_seed(base_seed + rank) + # 同时设置 CUDA 的随机种子 + torch.cuda.manual_seed_all(base_seed + rank) # Use seed_all for DDP + + if args.use_wandb and (not ddp or dist.get_rank() == 0): # Check rank for DDP wandb init + import wandb + + wandb.init(project=args.wandb_project, name=args.wandb_run_name, config=args) + else: + wandb = None + + model, tokenizer = init_model(lm_config) # Pass the lm_config instance + + # Update lm_config vocab_size again after tokenizer to ensure consistency for save path name + if lm_config.vocab_size != tokenizer.vocab_size: + lm_config.vocab_size = tokenizer.vocab_size + args.wandb_run_name = f"MiniMind-Word2Vec-Dim-{args.dim}-Vocab-{lm_config.vocab_size}-Window-{args.window_size}" + if wandb is not None and (not ddp or dist.get_rank() == 0): + wandb.config.update({'vocab_size': lm_config.vocab_size, 'wandb_run_name': args.wandb_run_name}, allow_val_change=True) + + # 添加collate函数处理不同长度的序列 + def collate_cbow_batch(batch): + # 提取context和target + contexts, targets = zip(*batch) + + # 获取当前批次中最长的context长度 + max_len = max([ctx.size(0) for ctx in contexts]) + + # 创建填充后的tensor + padded_contexts = torch.zeros(len(contexts), max_len, dtype=torch.long) + + # 填充每个context + for i, ctx in enumerate(contexts): + ctx_len = ctx.size(0) + padded_contexts[i, :ctx_len] = ctx + + # 将targets stack成一个tensor + stacked_targets = torch.stack(targets) + + return padded_contexts, stacked_targets + + # Create Word2Vec CBOW dataset + train_ds = CBOWDataset(args.data_path, tokenizer, max_length=lm_config.max_seq_len, window_size=args.window_size) + train_sampler = DistributedSampler(train_ds, shuffle=True, seed=base_seed) if ddp else None + train_loader = DataLoader( + train_ds, + batch_size=args.batch_size, + pin_memory=True, + drop_last=True, + shuffle=(train_sampler is None), + num_workers=args.num_workers, + sampler=train_sampler, + collate_fn=collate_cbow_batch + ) + + scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16'])) + optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate) + + if ddp: + model = DistributedDataParallel(model, device_ids=[ddp_local_rank]) + + iter_per_epoch = len(train_loader) + Logger(f"Starting Word2Vec CBOW training for {args.epochs} epochs with {iter_per_epoch} iterations per epoch.") + for epoch in range(args.epochs): + if ddp: + train_sampler.set_epoch(epoch) + train_epoch(epoch, wandb) + + if wandb is not None and (not ddp or dist.get_rank() == 0): + wandb.finish() + + Logger("Word2Vec embedding training finished.") \ No newline at end of file diff --git a/train_pretrain.py b/train_pretrain.py index b286b1e..1c9995b 100644 --- a/train_pretrain.py +++ b/train_pretrain.py @@ -14,6 +14,7 @@ from torch.nn.parallel import DistributedDataParallel from torch.optim.lr_scheduler import CosineAnnealingLR from torch.utils.data import DataLoader, DistributedSampler from contextlib import nullcontext +from typing import Optional from transformers import AutoTokenizer @@ -37,80 +38,124 @@ def get_lr(current_step, total_steps, lr): def train_epoch(epoch, wandb): - loss_fct = nn.CrossEntropyLoss(reduction='none') #交叉熵损失(Cross-Entropy Loss);当 reduction='none' 时,nn.CrossEntropyLoss 不会对损失进行任何汇总操作,而是返回每个样本的单独损失值。 + loss_fct = nn.CrossEntropyLoss(reduction='none') start_time = time.time() for step, (X, Y, loss_mask) in enumerate(train_loader): - # 将数据加载到设备上 - X = X.to(args.device) - Y = Y.to(args.device) - loss_mask = loss_mask.to(args.device) + try: + # 将数据加载到设备上 + X = X.to(args.device) + Y = Y.to(args.device) + loss_mask = loss_mask.to(args.device) - # 更新学习率 - lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch, args.learning_rate) - for param_group in optimizer.param_groups: - param_group['lr'] = lr + # 更新学习率 + lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch, args.learning_rate) + for param_group in optimizer.param_groups: + param_group['lr'] = lr - with ctx: - res = model(X) #获取输出 - loss = loss_fct( - res.logits.view(-1, res.logits.size(-1)), - Y.view(-1) - ).view(Y.size())#计算损失 - loss = (loss * loss_mask).sum() / loss_mask.sum() #计算总的loss - # 为了批次堆叠进行的处理,真正的batch size为num gpu*batch size per gpu*accumulation steps - loss += res.aux_loss - loss = loss / args.accumulation_steps + with ctx: + res = model(X) + loss = loss_fct( + res.logits.view(-1, res.logits.size(-1)), + Y.view(-1) + ).view(Y.size()) + loss = (loss * loss_mask).sum() / loss_mask.sum() + loss += res.aux_loss + loss = loss / args.accumulation_steps - scaler.scale(loss).backward() #用于处理混合精度训练。它的作用是自动缩放损失值,以防止在使用低精度(如 FP16)计算时出现数值不稳定的问题。 + # Print data types for debugging + if step == 0 and (not ddp or dist.get_rank() == 0): # Print only for the first step of the first epoch on the main process + Logger("---- Data Type Check ----") + Logger(f"X.dtype: {X.dtype}") + if hasattr(model, 'module'): # DDP case + Logger(f"Model parameter dtype: {next(model.module.parameters()).dtype}") + else: # Non-DDP case + Logger(f"Model parameter dtype: {next(model.parameters()).dtype}") + Logger(f"res.logits.dtype: {res.logits.dtype}") + Logger(f"loss.dtype: {loss.dtype}") + Logger("-------------------------") - # 如果达到堆叠数目就进行处理 - if (step + 1) % args.accumulation_steps == 0: - scaler.unscale_(optimizer) #PyTorch 自动混合精度(AMP)训练的一部分。它"反缩放"之前为防止在混合精度训练中出现下溢而缩放的梯度。 - torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip) #应用梯度裁剪以防止梯度爆炸。它会缩放梯度,使其范数不超过args.grad_clip。 + scaler.scale(loss).backward() - scaler.step(optimizer) #使用优化器更新模型权重,但由缩放器控制以适应混合精度训练。 - scaler.update() #根据本次迭代是否有梯度溢出来更新下一次迭代的缩放因子。 + if (step + 1) % args.accumulation_steps == 0: + scaler.unscale_(optimizer) + torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip) - optimizer.zero_grad(set_to_none=True) #为下一次迭代清零所有梯度。set_to_none=True参数通过将梯度设置为None而不是零来提高内存效率。 + scaler.step(optimizer) + scaler.update() - # 打印日志 - if step % args.log_interval == 0: - spend_time = time.time() - start_time - Logger( - 'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.12f} epoch_Time:{}min:'.format( - epoch + 1, - args.epochs, - step, - iter_per_epoch, - loss.item() * args.accumulation_steps, - optimizer.param_groups[-1]['lr'], - spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60)) + optimizer.zero_grad(set_to_none=True) - if (wandb is not None) and (not ddp or dist.get_rank() == 0): - wandb.log({"loss": loss.item() * args.accumulation_steps, - "lr": optimizer.param_groups[-1]['lr'], - "epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60}) + # 打印日志 + if step % args.log_interval == 0: + spend_time = time.time() - start_time + Logger( + 'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.12f} epoch_Time:{}min:'.format( + epoch + 1, + args.epochs, + step, + iter_per_epoch, + loss.item() * args.accumulation_steps, + optimizer.param_groups[-1]['lr'], + spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60)) - # 保存模型 - if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0): - model.eval() - moe_path = '_moe' if lm_config.use_moe else '' - ckp = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}.pth' + if (wandb is not None) and (not ddp or dist.get_rank() == 0): + wandb.log({"loss": loss.item() * args.accumulation_steps, + "lr": optimizer.param_groups[-1]['lr'], + "epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60}) + # 保存模型 + if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0): + model.eval() + moe_path = '_moe' if lm_config.use_moe else '' + ckp = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}.pth' + + if isinstance(model, torch.nn.parallel.DistributedDataParallel): + state_dict = model.module.state_dict() #获取模型参数 + else: + state_dict = model.state_dict() #获取模型参数 + + torch.save(state_dict, ckp) #只保存参数 + model.train() + + except Exception as e: + print(f"Error occurred: {str(e)}") + save_path = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}_nanERROR.pth' + if os.path.exists(save_path): + os.remove(save_path) + if isinstance(model, torch.nn.parallel.DistributedDataParallel): - state_dict = model.module.state_dict() #获取模型参数 + state_dict = model.module.state_dict() else: - state_dict = model.state_dict() #获取模型参数 + state_dict = model.state_dict() + torch.save(state_dict, save_path) - torch.save(state_dict, ckp) #只保存参数 - model.train() + for name, param in model.named_parameters(): + if param.grad is not None and torch.isnan(param.grad).any(): + print(f"NaN gradient in parameter: {name}") + + for name, param in model.named_parameters(): + if param.grad is not None and torch.isnan(param.grad).any(): + print(f"Parameter {name} values: {param.data}") + print(f"Parameter {name} gradients: {param.grad}") + + raise ValueError("NaN gradient detected") -def init_model(lm_config): +def init_model(lm_config, pretrained_embedding_path: Optional[str] = None): # 加载tokenizer tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer') # 加载模型 model = MiniMindLM(lm_config).to(args.device) + + # Load pretrained token embeddings if path is provided + if pretrained_embedding_path and os.path.exists(pretrained_embedding_path): + Logger(f"Loading pretrained token embeddings from {pretrained_embedding_path}") + embedding_weights = torch.load(pretrained_embedding_path, map_location=args.device) + model.tok_embeddings.load_state_dict(embedding_weights) + Logger("Successfully loaded pretrained token embeddings.") + elif pretrained_embedding_path: + Logger(f"Warning: Pretrained embedding path {pretrained_embedding_path} provided but file does not exist. Initializing embeddings from scratch.") + # 打印模型参数 Logger(f'LLM总参数量:{sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} 百万') return model, tokenizer @@ -153,6 +198,7 @@ if __name__ == "__main__": parser.add_argument('--max_seq_len', default=512, type=int) #最大序列长度,用于控制输入序列的最大长度。 parser.add_argument('--use_moe', default=False, type=bool) #是否使用MOE,用于控制是否使用MOE。 parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") #数据路径,用于控制数据集的路径。 + parser.add_argument("--pretrained_embedding_path", type=str, default=None, help="Path to pretrained token embedding weights (.pth file)") args = parser.parse_args() lm_config = LMConfig(dim=args.dim, n_layers=args.n_layers, max_seq_len=args.max_seq_len, use_moe=args.use_moe) #创建LMConfig对象,用于控制模型配置。 @@ -163,9 +209,12 @@ if __name__ == "__main__": print(f"tokens_per_iter: {tokens_per_iter}") device_type = "cuda" if "cuda" in args.device else "cpu" #确定设备类型。 + # Determine the torch dtype + pt_dtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[args.dtype] + args.wandb_run_name = f"MiniMind-Pretrain-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}" - ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast() + ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast(dtype=pt_dtype) ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run? ddp_local_rank, DEVICE = 0, "cuda:0" @@ -189,7 +238,7 @@ if __name__ == "__main__": else: wandb = None - model, tokenizer = init_model(lm_config) + model, tokenizer = init_model(lm_config, args.pretrained_embedding_path) train_ds = PretrainDataset(args.data_path, tokenizer, max_length=lm_config.max_seq_len) train_sampler = DistributedSampler(train_ds) if ddp else None train_loader = DataLoader( @@ -202,13 +251,14 @@ if __name__ == "__main__": sampler=train_sampler ) - scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16'])) + scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16'])) optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate) if ddp: model._ddp_params_and_buffers_to_ignore = {"pos_cis"} model = DistributedDataParallel(model, device_ids=[ddp_local_rank]) - + + torch.autograd.set_detect_anomaly(True) iter_per_epoch = len(train_loader) for epoch in range(args.epochs): train_epoch(epoch, wandb)