添加了train_embedding用于预训练嵌入模型
This commit is contained in:
parent
0859f54a88
commit
10f15724b4
@ -173,31 +173,42 @@ class CrossAttention(nn.Module):
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.num_heads = 8
|
||||
self.head_dim = 768 // self.num_heads
|
||||
self.to_q = nn.Linear(768, 768, bias=False)
|
||||
self.to_k = nn.Linear(768, 768, bias=False)
|
||||
self.to_v = nn.Linear(768, 768, bias=False)
|
||||
|
||||
self.to_out = nn.Linear(768, 768, bias=False)
|
||||
|
||||
def forward(self, x, db, context_mask=None, pos_emb=None):
|
||||
# db = db.permute(0, 2, 1)
|
||||
batch_size = x.size(0)
|
||||
|
||||
q = self.to_q(x)
|
||||
k = self.to_k(db)
|
||||
v = self.to_v(db)
|
||||
# 分离多头
|
||||
q = self.to_q(x).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
k = self.to_k(db).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
v = self.to_v(db).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
if pos_emb is not None:
|
||||
pos_emb = pos_emb.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
q = q + pos_emb
|
||||
k = k + pos_emb
|
||||
v = v + pos_emb
|
||||
|
||||
attn_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(k.size(-1))
|
||||
attn_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
||||
|
||||
if context_mask is not None:
|
||||
attn_scores = attn_scores.masked_fill(context_mask == 0, -1e10)
|
||||
expanded_mask = context_mask.unsqueeze(1).expand(-1, self.num_heads, -1, -1)
|
||||
attn_scores = attn_scores.masked_fill(expanded_mask == 0, -1e10)
|
||||
|
||||
attn_weights = F.softmax(attn_scores, dim=-1)
|
||||
|
||||
context = torch.matmul(attn_weights, v)
|
||||
|
||||
context = context.transpose(1, 2).contiguous().view(batch_size, -1, 768)
|
||||
|
||||
context = self.to_out(context)
|
||||
|
||||
return context
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
|
418
train_embedding.py
Normal file
418
train_embedding.py
Normal file
@ -0,0 +1,418 @@
|
||||
import os
|
||||
# 设置环境变量
|
||||
os.environ["WANDB_MODE"] = "offline" # 或者使用 "dryrun"
|
||||
import platform
|
||||
import argparse
|
||||
import time
|
||||
import math
|
||||
import warnings
|
||||
import pandas as pd
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch import optim, nn
|
||||
from torch.nn.parallel import DistributedDataParallel
|
||||
from torch.optim.lr_scheduler import CosineAnnealingLR
|
||||
from torch.utils.data import DataLoader, DistributedSampler, Dataset
|
||||
from contextlib import nullcontext
|
||||
import random
|
||||
import numpy as np
|
||||
import json
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
# Removed: from model.model import MiniMindLM
|
||||
from model.LMConfig import LMConfig
|
||||
# from model.dataset import PretrainDataset
|
||||
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
|
||||
# Define a Word2Vec-style CBOW model
|
||||
class CBOWModel(nn.Module):
|
||||
def __init__(self, config: LMConfig):
|
||||
super().__init__()
|
||||
self.vocab_size = config.vocab_size
|
||||
self.embedding_dim = config.dim
|
||||
|
||||
# Input embeddings (context words)
|
||||
self.embeddings = nn.Embedding(config.vocab_size, config.dim)
|
||||
|
||||
# Output weights for target prediction
|
||||
self.output_weights = nn.Linear(config.dim, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights
|
||||
self.init_weights()
|
||||
|
||||
def init_weights(self):
|
||||
# Xavier initialization for better convergence
|
||||
nn.init.xavier_uniform_(self.embeddings.weight)
|
||||
nn.init.xavier_uniform_(self.output_weights.weight)
|
||||
|
||||
def forward(self, context_words):
|
||||
# context_words shape: [batch_size, context_size],context_size可变
|
||||
|
||||
# Get embeddings for all context words
|
||||
embeds = self.embeddings(context_words) # [batch_size, context_size, embedding_dim]
|
||||
|
||||
# Average the context word embeddings along context dimension
|
||||
embeds = torch.mean(embeds, dim=1) # [batch_size, embedding_dim]
|
||||
|
||||
# Predict the target word
|
||||
output = self.output_weights(embeds) # [batch_size, vocab_size]
|
||||
|
||||
return output
|
||||
|
||||
|
||||
# Word2Vec CBOW dataset
|
||||
class CBOWDataset(Dataset):
|
||||
def __init__(self, data_path, tokenizer, max_length=512, window_size=5):
|
||||
super().__init__()
|
||||
self.tokenizer = tokenizer
|
||||
self.window_size = window_size
|
||||
self.max_length = max_length
|
||||
self.samples = self.load_data(data_path)
|
||||
|
||||
def load_data(self, path):
|
||||
samples = []
|
||||
with open(path, 'r', encoding='utf-8') as f:
|
||||
for line_num, line in enumerate(f, 1):
|
||||
data = json.loads(line.strip())
|
||||
samples.append(data)
|
||||
return samples
|
||||
|
||||
def __len__(self):
|
||||
return len(self.samples)
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.samples[index]
|
||||
|
||||
# 构建输入文本
|
||||
text = f"{self.tokenizer.bos_token}{str(sample['text'])}{self.tokenizer.eos_token}"
|
||||
encoding = self.tokenizer(
|
||||
text,
|
||||
max_length=self.max_length,
|
||||
padding='max_length',
|
||||
truncation=True,
|
||||
return_tensors='pt'
|
||||
)
|
||||
|
||||
# 获取token ids
|
||||
input_ids = encoding.input_ids.squeeze()
|
||||
# 过滤掉padding
|
||||
attention_mask = encoding.attention_mask.squeeze()
|
||||
valid_indices = torch.where(attention_mask == 1)[0]
|
||||
valid_input_ids = input_ids[valid_indices]
|
||||
|
||||
# 确保有足够的token进行CBOW训练
|
||||
if len(valid_input_ids) <= 2 * self.window_size + 1:
|
||||
# 如果token不足,随机选择一个不同的样本
|
||||
return self.__getitem__(random.randint(0, len(self.samples) - 1))
|
||||
|
||||
# 随机选择一个中心位置(不包括首尾的特殊token)
|
||||
# 确保中心位置两边都有至少window_size个token
|
||||
min_center_pos = self.window_size + 1 # 避开起始token
|
||||
max_center_pos = len(valid_input_ids) - self.window_size - 1 # 避开结束token
|
||||
|
||||
if max_center_pos <= min_center_pos:
|
||||
return self.__getitem__(random.randint(0, len(self.samples) - 1))
|
||||
|
||||
center_pos = random.randint(min_center_pos, max_center_pos)
|
||||
|
||||
# 目标词(中心词)
|
||||
target = valid_input_ids[center_pos].unsqueeze(0)
|
||||
|
||||
# 上下文词(中心词前后的词)
|
||||
context = torch.cat([
|
||||
valid_input_ids[center_pos - self.window_size:center_pos],
|
||||
valid_input_ids[center_pos + 1:center_pos + self.window_size + 1]
|
||||
])
|
||||
|
||||
return context, target
|
||||
|
||||
|
||||
def Logger(content):
|
||||
# 如果没有使用ddp或者ddp的主设备,那么就打印
|
||||
if not ddp or dist.get_rank() == 0:
|
||||
print(content)
|
||||
|
||||
|
||||
def get_lr(current_step, total_steps, lr):
|
||||
# 更新学习率
|
||||
# \text{get\_lr}(c, t, l) = \frac{l}{10} + 0.5 \cdot l \cdot \left(1 + \cos\left(\frac{\pi \cdot c}{t}\right)\right)
|
||||
return lr / 10 + 0.5 * lr * (1 + math.cos(math.pi * current_step / total_steps))
|
||||
|
||||
|
||||
def train_epoch(epoch, wandb):
|
||||
loss_fct = nn.CrossEntropyLoss()
|
||||
start_time = time.time()
|
||||
total_loss = 0
|
||||
total_samples = 0
|
||||
|
||||
for step, (context, target) in enumerate(train_loader):
|
||||
try:
|
||||
# 将数据加载到设备上
|
||||
context = context.to(args.device)
|
||||
target = target.to(args.device)
|
||||
|
||||
# 更新学习率
|
||||
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch, args.learning_rate)
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group['lr'] = lr
|
||||
|
||||
with ctx:
|
||||
# Forward pass
|
||||
logits = model(context) # [batch_size, vocab_size]
|
||||
# target是[batch_size, 1],需要squeeze成[batch_size]来匹配CrossEntropyLoss的预期
|
||||
loss = loss_fct(logits, target.squeeze())
|
||||
loss = loss / args.accumulation_steps
|
||||
|
||||
# Print data types for debugging
|
||||
if step == 0 and (not ddp or dist.get_rank() == 0):
|
||||
Logger("---- Data Type Check ----")
|
||||
Logger(f"context.dtype: {context.dtype}")
|
||||
Logger(f"context.shape: {context.shape}")
|
||||
Logger(f"target.dtype: {target.dtype}")
|
||||
Logger(f"target.shape: {target.shape}")
|
||||
if hasattr(model, 'module'): # DDP case
|
||||
Logger(f"Model parameter dtype: {next(model.module.parameters()).dtype}")
|
||||
else: # Non-DDP case
|
||||
Logger(f"Model parameter dtype: {next(model.parameters()).dtype}")
|
||||
Logger(f"logits.dtype: {logits.dtype}")
|
||||
Logger(f"logits.shape: {logits.shape}")
|
||||
Logger(f"loss.dtype: {loss.dtype}")
|
||||
Logger("-------------------------")
|
||||
|
||||
scaler.scale(loss).backward()
|
||||
|
||||
if (step + 1) % args.accumulation_steps == 0:
|
||||
scaler.unscale_(optimizer)
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
|
||||
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
|
||||
total_loss += loss.item() * args.accumulation_steps
|
||||
total_samples += 1
|
||||
|
||||
# 打印日志
|
||||
if step % args.log_interval == 0:
|
||||
spend_time = time.time() - start_time
|
||||
avg_loss = total_loss / total_samples if total_samples > 0 else 0
|
||||
Logger(
|
||||
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.12f} epoch_Time:{}min:'.format(
|
||||
epoch + 1,
|
||||
args.epochs,
|
||||
step,
|
||||
iter_per_epoch,
|
||||
avg_loss,
|
||||
optimizer.param_groups[-1]['lr'],
|
||||
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
||||
|
||||
if (wandb is not None) and (not ddp or dist.get_rank() == 0):
|
||||
wandb.log({"loss": avg_loss,
|
||||
"lr": optimizer.param_groups[-1]['lr'],
|
||||
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error occurred: {str(e)}")
|
||||
import traceback
|
||||
traceback.print_exc()
|
||||
# Modified checkpoint path for error
|
||||
save_path = f'{args.save_dir}/word2vec_embedding_dim{lm_config.dim}_vocab{lm_config.vocab_size}_ERROR.pth'
|
||||
if os.path.exists(save_path):
|
||||
os.remove(save_path)
|
||||
|
||||
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
||||
state_dict = model.module.embeddings.state_dict()
|
||||
else:
|
||||
state_dict = model.embeddings.state_dict()
|
||||
torch.save(state_dict, save_path)
|
||||
|
||||
for name, param in model.named_parameters():
|
||||
if param.grad is not None and torch.isnan(param.grad).any():
|
||||
print(f"NaN gradient in parameter: {name}")
|
||||
|
||||
for name, param in model.named_parameters():
|
||||
if param.grad is not None and torch.isnan(param.grad).any():
|
||||
print(f"Parameter {name} values: {param.data}")
|
||||
print(f"Parameter {name} gradients: {param.grad}")
|
||||
|
||||
raise ValueError("NaN gradient detected")
|
||||
|
||||
# Save model once at the end of each epoch
|
||||
if not ddp or dist.get_rank() == 0:
|
||||
model.eval()
|
||||
ckp = f'{args.save_dir}/word2vec_embedding_dim{lm_config.dim}_vocab{lm_config.vocab_size}_epoch{epoch+1}.pth'
|
||||
|
||||
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
||||
embedding_state_dict = model.module.embeddings.state_dict()
|
||||
else:
|
||||
embedding_state_dict = model.embeddings.state_dict()
|
||||
|
||||
torch.save(embedding_state_dict, ckp)
|
||||
Logger(f"Saved word2vec embedding for epoch {epoch+1} to {ckp}")
|
||||
model.train()
|
||||
|
||||
|
||||
def init_model(lm_config_params: LMConfig):
|
||||
# 加载tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
|
||||
# Update vocab_size in lm_config if tokenizer has a different one
|
||||
if tokenizer.vocab_size != lm_config_params.vocab_size:
|
||||
Logger(f"Updating lm_config.vocab_size from {lm_config_params.vocab_size} to {tokenizer.vocab_size} based on tokenizer.")
|
||||
lm_config_params.vocab_size = tokenizer.vocab_size
|
||||
|
||||
# 加载word2vec CBOW模型
|
||||
model = CBOWModel(lm_config_params).to(args.device)
|
||||
# 打印模型参数
|
||||
Logger(f'CBOW Model total parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} Million')
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def init_distributed_mode():
|
||||
if not ddp: return #如果没有启用分布式数据并行(DDP),直接返回,不执行任何操作。
|
||||
global ddp_local_rank, DEVICE #声明这两个变量为全局变量,以便在函数外部也能访问它们。
|
||||
|
||||
dist.init_process_group(backend="nccl") #初始化分布式进程组,使用NCCL后端(NVIDIA Collective Communications Library),这是NVIDIA GPU之间通信的优化库。
|
||||
ddp_rank = int(os.environ["RANK"]) #从环境变量获取当前进程的全局编号。
|
||||
ddp_local_rank = int(os.environ["LOCAL_RANK"]) #从环境变量获取当前进程的本地编号。
|
||||
ddp_world_size = int(os.environ["WORLD_SIZE"]) #从环境变量获取当前进程组中的进程总数。
|
||||
DEVICE = f"cuda:{ddp_local_rank}" #根据本地编号选择GPU设备。
|
||||
torch.cuda.set_device(DEVICE) #设置当前进程的GPU设备。
|
||||
|
||||
|
||||
# torchrun --nproc_per_node 2 train_embedding.py
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="MiniMind Word2Vec Embedding Training")
|
||||
parser.add_argument("--out_dir", type=str, default="out_word2vec")
|
||||
parser.add_argument("--epochs", type=int, default=3)
|
||||
parser.add_argument("--batch_size", type=int, default=256)
|
||||
parser.add_argument("--learning_rate", type=float, default=5e-4)
|
||||
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
parser.add_argument("--dtype", type=str, default="bfloat16")
|
||||
parser.add_argument("--use_wandb", default=False, action="store_true")
|
||||
parser.add_argument("--wandb_project", type=str, default="MiniMind-Word2Vec-Training")
|
||||
parser.add_argument("--num_workers", type=int, default=32)
|
||||
parser.add_argument("--ddp", action="store_true")
|
||||
parser.add_argument("--accumulation_steps", type=int, default=8)
|
||||
parser.add_argument("--grad_clip", type=float, default=1.0)
|
||||
parser.add_argument("--log_interval", type=int, default=100)
|
||||
parser.add_argument("--save_interval", type=int, default=100)
|
||||
parser.add_argument('--local_rank', type=int, default=-1)
|
||||
parser.add_argument('--dim', default=768, type=int)
|
||||
parser.add_argument('--max_seq_len', default=512, type=int)
|
||||
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl")
|
||||
parser.add_argument('--vocab_size', default=6400, type=int)
|
||||
parser.add_argument('--window_size', default=5, type=int)
|
||||
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Create LMConfig with relevant parameters for embedding
|
||||
lm_config = LMConfig(
|
||||
dim=args.dim,
|
||||
vocab_size=args.vocab_size, # Will be updated by tokenizer
|
||||
max_seq_len=args.max_seq_len,
|
||||
n_layers=1, # Minimal
|
||||
n_heads=1, # Minimal
|
||||
n_kv_heads=1 #Minimal
|
||||
)
|
||||
args.save_dir = os.path.join(args.out_dir)
|
||||
os.makedirs(args.save_dir, exist_ok=True)
|
||||
os.makedirs(args.out_dir, exist_ok=True)
|
||||
tokens_per_iter = args.batch_size * lm_config.max_seq_len
|
||||
print(f"tokens_per_iter: {tokens_per_iter}")
|
||||
device_type = "cuda" if "cuda" in args.device else "cpu"
|
||||
|
||||
# Determine the torch dtype
|
||||
pt_dtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[args.dtype]
|
||||
|
||||
args.wandb_run_name = f"MiniMind-Word2Vec-Dim-{args.dim}-Vocab-{lm_config.vocab_size}-Window-{args.window_size}"
|
||||
|
||||
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast(dtype=pt_dtype)
|
||||
|
||||
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
|
||||
ddp_local_rank, DEVICE = 0, "cuda:0" # Default values, will be overwritten in DDP
|
||||
|
||||
base_seed = 1337
|
||||
torch.manual_seed(base_seed)
|
||||
torch.cuda.manual_seed(base_seed)
|
||||
|
||||
if ddp:
|
||||
init_distributed_mode() # This sets DEVICE and ddp_local_rank
|
||||
args.device = torch.device(DEVICE) # Ensure args.device is updated
|
||||
rank = dist.get_rank()
|
||||
torch.manual_seed(base_seed + rank)
|
||||
# 同时设置 CUDA 的随机种子
|
||||
torch.cuda.manual_seed_all(base_seed + rank) # Use seed_all for DDP
|
||||
|
||||
if args.use_wandb and (not ddp or dist.get_rank() == 0): # Check rank for DDP wandb init
|
||||
import wandb
|
||||
|
||||
wandb.init(project=args.wandb_project, name=args.wandb_run_name, config=args)
|
||||
else:
|
||||
wandb = None
|
||||
|
||||
model, tokenizer = init_model(lm_config) # Pass the lm_config instance
|
||||
|
||||
# Update lm_config vocab_size again after tokenizer to ensure consistency for save path name
|
||||
if lm_config.vocab_size != tokenizer.vocab_size:
|
||||
lm_config.vocab_size = tokenizer.vocab_size
|
||||
args.wandb_run_name = f"MiniMind-Word2Vec-Dim-{args.dim}-Vocab-{lm_config.vocab_size}-Window-{args.window_size}"
|
||||
if wandb is not None and (not ddp or dist.get_rank() == 0):
|
||||
wandb.config.update({'vocab_size': lm_config.vocab_size, 'wandb_run_name': args.wandb_run_name}, allow_val_change=True)
|
||||
|
||||
# 添加collate函数处理不同长度的序列
|
||||
def collate_cbow_batch(batch):
|
||||
# 提取context和target
|
||||
contexts, targets = zip(*batch)
|
||||
|
||||
# 获取当前批次中最长的context长度
|
||||
max_len = max([ctx.size(0) for ctx in contexts])
|
||||
|
||||
# 创建填充后的tensor
|
||||
padded_contexts = torch.zeros(len(contexts), max_len, dtype=torch.long)
|
||||
|
||||
# 填充每个context
|
||||
for i, ctx in enumerate(contexts):
|
||||
ctx_len = ctx.size(0)
|
||||
padded_contexts[i, :ctx_len] = ctx
|
||||
|
||||
# 将targets stack成一个tensor
|
||||
stacked_targets = torch.stack(targets)
|
||||
|
||||
return padded_contexts, stacked_targets
|
||||
|
||||
# Create Word2Vec CBOW dataset
|
||||
train_ds = CBOWDataset(args.data_path, tokenizer, max_length=lm_config.max_seq_len, window_size=args.window_size)
|
||||
train_sampler = DistributedSampler(train_ds, shuffle=True, seed=base_seed) if ddp else None
|
||||
train_loader = DataLoader(
|
||||
train_ds,
|
||||
batch_size=args.batch_size,
|
||||
pin_memory=True,
|
||||
drop_last=True,
|
||||
shuffle=(train_sampler is None),
|
||||
num_workers=args.num_workers,
|
||||
sampler=train_sampler,
|
||||
collate_fn=collate_cbow_batch
|
||||
)
|
||||
|
||||
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))
|
||||
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)
|
||||
|
||||
if ddp:
|
||||
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
|
||||
|
||||
iter_per_epoch = len(train_loader)
|
||||
Logger(f"Starting Word2Vec CBOW training for {args.epochs} epochs with {iter_per_epoch} iterations per epoch.")
|
||||
for epoch in range(args.epochs):
|
||||
if ddp:
|
||||
train_sampler.set_epoch(epoch)
|
||||
train_epoch(epoch, wandb)
|
||||
|
||||
if wandb is not None and (not ddp or dist.get_rank() == 0):
|
||||
wandb.finish()
|
||||
|
||||
Logger("Word2Vec embedding training finished.")
|
@ -14,6 +14,7 @@ from torch.nn.parallel import DistributedDataParallel
|
||||
from torch.optim.lr_scheduler import CosineAnnealingLR
|
||||
from torch.utils.data import DataLoader, DistributedSampler
|
||||
from contextlib import nullcontext
|
||||
from typing import Optional
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
@ -37,9 +38,10 @@ def get_lr(current_step, total_steps, lr):
|
||||
|
||||
|
||||
def train_epoch(epoch, wandb):
|
||||
loss_fct = nn.CrossEntropyLoss(reduction='none') #交叉熵损失(Cross-Entropy Loss);当 reduction='none' 时,nn.CrossEntropyLoss 不会对损失进行任何汇总操作,而是返回每个样本的单独损失值。
|
||||
loss_fct = nn.CrossEntropyLoss(reduction='none')
|
||||
start_time = time.time()
|
||||
for step, (X, Y, loss_mask) in enumerate(train_loader):
|
||||
try:
|
||||
# 将数据加载到设备上
|
||||
X = X.to(args.device)
|
||||
Y = Y.to(args.device)
|
||||
@ -51,27 +53,37 @@ def train_epoch(epoch, wandb):
|
||||
param_group['lr'] = lr
|
||||
|
||||
with ctx:
|
||||
res = model(X) #获取输出
|
||||
res = model(X)
|
||||
loss = loss_fct(
|
||||
res.logits.view(-1, res.logits.size(-1)),
|
||||
Y.view(-1)
|
||||
).view(Y.size())#计算损失
|
||||
loss = (loss * loss_mask).sum() / loss_mask.sum() #计算总的loss
|
||||
# 为了批次堆叠进行的处理,真正的batch size为num gpu*batch size per gpu*accumulation steps
|
||||
).view(Y.size())
|
||||
loss = (loss * loss_mask).sum() / loss_mask.sum()
|
||||
loss += res.aux_loss
|
||||
loss = loss / args.accumulation_steps
|
||||
|
||||
scaler.scale(loss).backward() #用于处理混合精度训练。它的作用是自动缩放损失值,以防止在使用低精度(如 FP16)计算时出现数值不稳定的问题。
|
||||
# Print data types for debugging
|
||||
if step == 0 and (not ddp or dist.get_rank() == 0): # Print only for the first step of the first epoch on the main process
|
||||
Logger("---- Data Type Check ----")
|
||||
Logger(f"X.dtype: {X.dtype}")
|
||||
if hasattr(model, 'module'): # DDP case
|
||||
Logger(f"Model parameter dtype: {next(model.module.parameters()).dtype}")
|
||||
else: # Non-DDP case
|
||||
Logger(f"Model parameter dtype: {next(model.parameters()).dtype}")
|
||||
Logger(f"res.logits.dtype: {res.logits.dtype}")
|
||||
Logger(f"loss.dtype: {loss.dtype}")
|
||||
Logger("-------------------------")
|
||||
|
||||
scaler.scale(loss).backward()
|
||||
|
||||
# 如果达到堆叠数目就进行处理
|
||||
if (step + 1) % args.accumulation_steps == 0:
|
||||
scaler.unscale_(optimizer) #PyTorch 自动混合精度(AMP)训练的一部分。它"反缩放"之前为防止在混合精度训练中出现下溢而缩放的梯度。
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip) #应用梯度裁剪以防止梯度爆炸。它会缩放梯度,使其范数不超过args.grad_clip。
|
||||
scaler.unscale_(optimizer)
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
|
||||
|
||||
scaler.step(optimizer) #使用优化器更新模型权重,但由缩放器控制以适应混合精度训练。
|
||||
scaler.update() #根据本次迭代是否有梯度溢出来更新下一次迭代的缩放因子。
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
|
||||
optimizer.zero_grad(set_to_none=True) #为下一次迭代清零所有梯度。set_to_none=True参数通过将梯度设置为None而不是零来提高内存效率。
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
|
||||
# 打印日志
|
||||
if step % args.log_interval == 0:
|
||||
@ -105,12 +117,45 @@ def train_epoch(epoch, wandb):
|
||||
torch.save(state_dict, ckp) #只保存参数
|
||||
model.train()
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error occurred: {str(e)}")
|
||||
save_path = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}_nanERROR.pth'
|
||||
if os.path.exists(save_path):
|
||||
os.remove(save_path)
|
||||
|
||||
def init_model(lm_config):
|
||||
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
torch.save(state_dict, save_path)
|
||||
|
||||
for name, param in model.named_parameters():
|
||||
if param.grad is not None and torch.isnan(param.grad).any():
|
||||
print(f"NaN gradient in parameter: {name}")
|
||||
|
||||
for name, param in model.named_parameters():
|
||||
if param.grad is not None and torch.isnan(param.grad).any():
|
||||
print(f"Parameter {name} values: {param.data}")
|
||||
print(f"Parameter {name} gradients: {param.grad}")
|
||||
|
||||
raise ValueError("NaN gradient detected")
|
||||
|
||||
|
||||
def init_model(lm_config, pretrained_embedding_path: Optional[str] = None):
|
||||
# 加载tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
|
||||
# 加载模型
|
||||
model = MiniMindLM(lm_config).to(args.device)
|
||||
|
||||
# Load pretrained token embeddings if path is provided
|
||||
if pretrained_embedding_path and os.path.exists(pretrained_embedding_path):
|
||||
Logger(f"Loading pretrained token embeddings from {pretrained_embedding_path}")
|
||||
embedding_weights = torch.load(pretrained_embedding_path, map_location=args.device)
|
||||
model.tok_embeddings.load_state_dict(embedding_weights)
|
||||
Logger("Successfully loaded pretrained token embeddings.")
|
||||
elif pretrained_embedding_path:
|
||||
Logger(f"Warning: Pretrained embedding path {pretrained_embedding_path} provided but file does not exist. Initializing embeddings from scratch.")
|
||||
|
||||
# 打印模型参数
|
||||
Logger(f'LLM总参数量:{sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} 百万')
|
||||
return model, tokenizer
|
||||
@ -153,6 +198,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument('--max_seq_len', default=512, type=int) #最大序列长度,用于控制输入序列的最大长度。
|
||||
parser.add_argument('--use_moe', default=False, type=bool) #是否使用MOE,用于控制是否使用MOE。
|
||||
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") #数据路径,用于控制数据集的路径。
|
||||
parser.add_argument("--pretrained_embedding_path", type=str, default=None, help="Path to pretrained token embedding weights (.pth file)")
|
||||
args = parser.parse_args()
|
||||
|
||||
lm_config = LMConfig(dim=args.dim, n_layers=args.n_layers, max_seq_len=args.max_seq_len, use_moe=args.use_moe) #创建LMConfig对象,用于控制模型配置。
|
||||
@ -163,9 +209,12 @@ if __name__ == "__main__":
|
||||
print(f"tokens_per_iter: {tokens_per_iter}")
|
||||
device_type = "cuda" if "cuda" in args.device else "cpu" #确定设备类型。
|
||||
|
||||
# Determine the torch dtype
|
||||
pt_dtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[args.dtype]
|
||||
|
||||
args.wandb_run_name = f"MiniMind-Pretrain-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
|
||||
|
||||
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
|
||||
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast(dtype=pt_dtype)
|
||||
|
||||
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
|
||||
ddp_local_rank, DEVICE = 0, "cuda:0"
|
||||
@ -189,7 +238,7 @@ if __name__ == "__main__":
|
||||
else:
|
||||
wandb = None
|
||||
|
||||
model, tokenizer = init_model(lm_config)
|
||||
model, tokenizer = init_model(lm_config, args.pretrained_embedding_path)
|
||||
train_ds = PretrainDataset(args.data_path, tokenizer, max_length=lm_config.max_seq_len)
|
||||
train_sampler = DistributedSampler(train_ds) if ddp else None
|
||||
train_loader = DataLoader(
|
||||
@ -202,13 +251,14 @@ if __name__ == "__main__":
|
||||
sampler=train_sampler
|
||||
)
|
||||
|
||||
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))
|
||||
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16']))
|
||||
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)
|
||||
|
||||
if ddp:
|
||||
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
|
||||
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
|
||||
|
||||
torch.autograd.set_detect_anomaly(True)
|
||||
iter_per_epoch = len(train_loader)
|
||||
for epoch in range(args.epochs):
|
||||
train_epoch(epoch, wandb)
|
||||
|
Loading…
x
Reference in New Issue
Block a user