将Million MoE的思想加入

This commit is contained in:
Jax922 2025-04-24 21:29:33 +08:00
parent c55dfc0b46
commit 1ddfd310ec

View File

@ -12,7 +12,7 @@ from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
# RMSNorm 类定义了一个用于归一化输入张量的模块。
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
@ -25,7 +25,7 @@ class RMSNorm(torch.nn.Module):
def forward(self, x):
return self.weight * self._norm(x.float()).type_as(x)
# precompute_pos_cis 函数用于预计算位置编码。
def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
@ -33,7 +33,7 @@ def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return pos_cis
# apply_rotary_emb 函数用于应用旋转位置编码。
def apply_rotary_emb(xq, xk, pos_cis):
def unite_shape(pos_cis, x):
ndim = x.ndim
@ -49,7 +49,7 @@ def apply_rotary_emb(xq, xk, pos_cis):
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
# repeat_kv 函数用于重复键值对。
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
@ -88,13 +88,15 @@ class Attention(nn.Module):
x: torch.Tensor,
pos_cis: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache=False):
bsz, seq_len, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
use_cache=False,
db_value=None):
bsz, seq_len, _ = x.shape #bsz: 批量大小, seq_len: 序列长度, _: 隐藏维度
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) #将输入张量x分别通过线性层wq, wk, wv进行变换得到查询、键和值。
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim) #将变换后的张量xq重塑为形状为(bsz, seq_len, n_local_heads, head_dim)的形状。
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xk重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xv重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
# 应用旋转位置编码
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
# kv_cache实现
if past_key_value is not None:
@ -102,11 +104,40 @@ class Attention(nn.Module):
xv = torch.cat([past_key_value[1], xv], dim=1)
past_kv = (xk, xv) if use_cache else None
# 重复键值对
xq, xk, xv = (
xq.transpose(1, 2),
repeat_kv(xk, self.n_rep).transpose(1, 2),
repeat_kv(xv, self.n_rep).transpose(1, 2)
)
# 如果提供了db_value根据头的数量调整它的形状并与xv合并
if db_value is not None:
# 确保db_value的形状与xv兼容假设db_value形状为[B, N, H, D]
if db_value.ndim == 4: # [B, N, H, D]
db_value = db_value.transpose(1, 2) # -> [B, H, N, D]
# 检查是否需要调整D维度
if db_value.shape[-1] != xv.shape[-1]:
# 如果db_value的维度与xv不同可以添加一个投影层
# 或者在这里使用简单的调整方法
# 这里我们简单地通过均值池化或重复来调整维度
if db_value.shape[-1] > xv.shape[-1]:
# 降维
factor = db_value.shape[-1] // xv.shape[-1]
db_value = db_value.view(bsz, self.n_local_heads, seq_len, factor, xv.shape[-1])
db_value = db_value.mean(dim=3)
else:
# 升维
factor = xv.shape[-1] // db_value.shape[-1]
db_value = db_value.unsqueeze(-1).repeat(1, 1, 1, 1, factor)
db_value = db_value.view(bsz, self.n_local_heads, seq_len, xv.shape[-1])
# 将db_value与xv相加或融合
# 这里我们简单地将它们相加,但你也可以使用其他融合方法
xv = xv + db_value
# 使用Flash Attention
if self.flash and seq_len != 1:
dropout_p = self.dropout if self.training else 0.0
output = F.scaled_dot_product_attention(
@ -259,7 +290,7 @@ class MOEFeedForward(nn.Module):
class MiniMindBlock(nn.Module):
def __init__(self, layer_id: int, config: LMConfig):
def __init__(self, layer_id: int, config: LMConfig, weight_down_embed=None):
super().__init__()
self.n_heads = config.n_heads
self.dim = config.dim
@ -270,13 +301,86 @@ class MiniMindBlock(nn.Module):
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
# Product Key 相关参数
self.weight_down_embed = weight_down_embed
# 假设num_experts是已定义的总专家数量的平方根
self.num_keys = int(math.sqrt(self.weight_down_embed.num_embeddings)) if weight_down_embed is not None else 0
# 查询生成的参数
self.dim_key = config.dim // 2 # 一般用特征维度的一半
# 创建查询生成模块
if weight_down_embed is not None:
self.to_queries = nn.Sequential(
nn.Linear(config.dim, self.dim_key * self.n_heads * 2, bias=False),
nn.Unflatten(2, (2, self.n_heads, self.dim_key)) # 替代Rearrange
)
# 存储Product Keys
self.keys = nn.Parameter(torch.randn(self.n_heads, self.num_keys, 2, self.dim_key) * 0.02)
# 超参数
self.product_key_topk = min(16, self.num_keys) # 确保不超过num_keys
self.num_experts_per_head_topk = 1 # 最终每个头选取的专家数
def forward(self, x, pos_cis, past_key_value=None, use_cache=False):
db_value = None
# 如果有weight_down_embed使用Product Key机制
if self.weight_down_embed is not None:
# 1. 生成queries
queries = self.to_queries(x) # [b, n, 2, h, d]
queries = queries.permute(2, 0, 1, 3, 4) # [2, b, n, h, d]
# 2. 计算queries与keys的相似度
sim = torch.einsum('p b n h d, h k p d -> p b n h k', queries, self.keys)
# 3. 在两个子空间分别做top-k
scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
# 4. 组合两个子空间的分数和索引
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
# 5. 最终top-k选择
scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
indices = all_indices.gather(-1, pk_indices)
# 6. 从embedding中获取专家值
# [b, n, h, k] -> [b, n, h, k, 1] -> [b, n, h, k, d]
indices_expanded = indices.unsqueeze(-1).expand(-1, -1, -1, -1, self.weight_down_embed.embedding_dim)
# 将索引从3D展平为1D以便gather操作
batch_size, seq_len = x.shape[0], x.shape[1]
flat_indices = indices.view(-1)
# 从embedding中获取值
db_values = self.weight_down_embed(flat_indices)
# 重塑回原始形状
db_value = db_values.view(batch_size, seq_len, self.n_heads,
self.num_experts_per_head_topk, -1)
# 使用分数加权
db_value = db_value * F.relu(scores.unsqueeze(-1))
# 合并多个专家的输出(如果每个头有多个专家)
if self.num_experts_per_head_topk > 1:
db_value = db_value.sum(dim=3) # [b, n, h, d]
# 注意力计算
h_attn, past_kv = self.attention(
self.attention_norm(x),
pos_cis,
past_key_value=past_key_value,
use_cache=use_cache
use_cache=use_cache,
db_value=db_value
)
h = x + h_attn
out = h + self.feed_forward(self.ffn_norm(h))
@ -292,7 +396,20 @@ class MiniMindLM(PreTrainedModel):
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.dropout = nn.Dropout(params.dropout)
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
# 修改专家数量和知识维度,确保能开方
self.num_experts = 1000 * 1000 # 1M专家确保是完全平方数
# 将knowledge_dim设置为与head_dim相同以便在attention中直接使用
self.head_dim = params.dim // params.n_heads
self.knowledge_dim = self.head_dim
# 定义weight_down_embed用于存储专家知识
self.weight_down_embed = nn.Embedding(self.num_experts, self.knowledge_dim)
# 初始化embedding权重
nn.init.normal_(self.weight_down_embed.weight, std=0.02)
# 将self.weight_down_embed传递给每个MiniMindBlock
self.layers = nn.ModuleList([MiniMindBlock(l, params, self.weight_down_embed) for l in range(self.n_layers)])
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
self.tok_embeddings.weight = self.output.weight