update wandb monitor
This commit is contained in:
parent
15f8242ba7
commit
235b6c6fd3
@ -73,7 +73,8 @@ def train_epoch(epoch, wandb, accumulation_steps=8):
|
|||||||
loss.item() * accumulation_steps,
|
loss.item() * accumulation_steps,
|
||||||
optimizer.param_groups[-1]['lr'],
|
optimizer.param_groups[-1]['lr'],
|
||||||
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
||||||
if wandb != None:
|
|
||||||
|
if (use_wandb is not None) and (not ddp or dist.get_rank() == 0):
|
||||||
wandb.log({"loss": loss.item() * accumulation_steps,
|
wandb.log({"loss": loss.item() * accumulation_steps,
|
||||||
"lr": optimizer.param_groups[-1]['lr'],
|
"lr": optimizer.param_groups[-1]['lr'],
|
||||||
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
||||||
@ -124,6 +125,7 @@ def init_distributed_mode():
|
|||||||
DEVICE = f"cuda:{ddp_local_rank}"
|
DEVICE = f"cuda:{ddp_local_rank}"
|
||||||
torch.cuda.set_device(DEVICE)
|
torch.cuda.set_device(DEVICE)
|
||||||
|
|
||||||
|
|
||||||
# torchrun --nproc_per_node 2 1-pretrain.py
|
# torchrun --nproc_per_node 2 1-pretrain.py
|
||||||
# I/O
|
# I/O
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
@ -143,7 +145,7 @@ if __name__ == "__main__":
|
|||||||
torch.manual_seed(1337)
|
torch.manual_seed(1337)
|
||||||
device_type = device if "cuda" in device else "cpu"
|
device_type = device if "cuda" in device else "cpu"
|
||||||
|
|
||||||
use_wandb = True #是否使用wandb
|
use_wandb = False # 是否使用wandb
|
||||||
wandb_project = "MiniMind-Pretrain"
|
wandb_project = "MiniMind-Pretrain"
|
||||||
wandb_run_name = f"MiniMind-Pretrain-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}"
|
wandb_run_name = f"MiniMind-Pretrain-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}"
|
||||||
if use_wandb:
|
if use_wandb:
|
||||||
@ -152,7 +154,6 @@ if __name__ == "__main__":
|
|||||||
else:
|
else:
|
||||||
wandb = None
|
wandb = None
|
||||||
|
|
||||||
|
|
||||||
ctx = (
|
ctx = (
|
||||||
nullcontext()
|
nullcontext()
|
||||||
if device_type == "cpu"
|
if device_type == "cpu"
|
||||||
|
@ -85,8 +85,10 @@ def train_epoch(epoch, wandb):
|
|||||||
loss,
|
loss,
|
||||||
optimizer.param_groups[-1]['lr'],
|
optimizer.param_groups[-1]['lr'],
|
||||||
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
||||||
if use_wandb != None:
|
|
||||||
wandb.log({"loss": loss, "lr": optimizer.param_groups[-1]['lr'],
|
if (use_wandb is not None) and (not ddp or dist.get_rank() == 0):
|
||||||
|
wandb.log({"loss": loss,
|
||||||
|
"lr": optimizer.param_groups[-1]['lr'],
|
||||||
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
||||||
|
|
||||||
if (step + 1) % 1000 == 0 and (not ddp or dist.get_rank() == 0):
|
if (step + 1) % 1000 == 0 and (not ddp or dist.get_rank() == 0):
|
||||||
@ -161,11 +163,12 @@ if __name__ == "__main__":
|
|||||||
torch.manual_seed(1337)
|
torch.manual_seed(1337)
|
||||||
device_type = device if "cuda" in device else "cpu"
|
device_type = device if "cuda" in device else "cpu"
|
||||||
|
|
||||||
use_wandb = True #是否使用wandb
|
use_wandb = False # 是否使用wandb
|
||||||
wandb_project = "MiniMind-Full-SFT"
|
wandb_project = "MiniMind-Full-SFT"
|
||||||
wandb_run_name = f"MiniMind-Full-SFT-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}"
|
wandb_run_name = f"MiniMind-Full-SFT-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}"
|
||||||
if use_wandb:
|
if use_wandb:
|
||||||
import wandb
|
import wandb
|
||||||
|
|
||||||
wandb.init(project=wandb_project, name=wandb_run_name)
|
wandb.init(project=wandb_project, name=wandb_run_name)
|
||||||
else:
|
else:
|
||||||
wandb = None
|
wandb = None
|
||||||
@ -219,5 +222,5 @@ if __name__ == "__main__":
|
|||||||
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
|
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
|
||||||
|
|
||||||
# training loop
|
# training loop
|
||||||
for epoch in range(epochs,wandb):
|
for epoch in range(epochs):
|
||||||
train_epoch(epoch)
|
train_epoch(epoch, wandb)
|
||||||
|
@ -72,7 +72,8 @@ def train_epoch(epoch, wandb):
|
|||||||
loss.item(),
|
loss.item(),
|
||||||
optimizer.param_groups[-1]['lr'],
|
optimizer.param_groups[-1]['lr'],
|
||||||
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
||||||
if use_wandb != None:
|
|
||||||
|
if use_wandb is not None:
|
||||||
wandb.log({"loss": loss.item(), "lr": optimizer.param_groups[-1]['lr'],
|
wandb.log({"loss": loss.item(), "lr": optimizer.param_groups[-1]['lr'],
|
||||||
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
||||||
|
|
||||||
@ -91,8 +92,8 @@ def find_all_linear_names(model):
|
|||||||
|
|
||||||
|
|
||||||
def init_model():
|
def init_model():
|
||||||
model_name_or_path = "./minimind"
|
model_name_or_path = "./minimind-v1-small"
|
||||||
tokenizer_name_or_path = "./minimind"
|
tokenizer_name_or_path = "./minimind-v1-small"
|
||||||
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, trust_remote_code=True, use_fast=False)
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, trust_remote_code=True, use_fast=False)
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True).to(device)
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True).to(device)
|
||||||
|
|
||||||
@ -131,11 +132,12 @@ if __name__ == "__main__":
|
|||||||
torch.manual_seed(1337)
|
torch.manual_seed(1337)
|
||||||
device_type = device if "cuda" in device else "cpu"
|
device_type = device if "cuda" in device else "cpu"
|
||||||
|
|
||||||
use_wandb = True #是否使用wandb
|
use_wandb = False # 是否使用wandb
|
||||||
wandb_project = "MiniMind-LoRA"
|
wandb_project = "MiniMind-LoRA-SFT"
|
||||||
wandb_run_name = f"MiniMind-LoRA-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}"
|
wandb_run_name = f"MiniMind-LoRA-SFT-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}"
|
||||||
if use_wandb:
|
if use_wandb:
|
||||||
import wandb
|
import wandb
|
||||||
|
|
||||||
wandb.init(project=wandb_project, name=wandb_run_name)
|
wandb.init(project=wandb_project, name=wandb_run_name)
|
||||||
else:
|
else:
|
||||||
wandb = None
|
wandb = None
|
||||||
@ -150,7 +152,7 @@ if __name__ == "__main__":
|
|||||||
model, tokenizer = init_model()
|
model, tokenizer = init_model()
|
||||||
|
|
||||||
# -----init dataloader------
|
# -----init dataloader------
|
||||||
df = pd.read_csv('./dataset/sft_data.csv')
|
df = pd.read_csv('./dataset/sft_data_single.csv')
|
||||||
df = df.sample(frac=1.0)
|
df = df.sample(frac=1.0)
|
||||||
train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len)
|
train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len)
|
||||||
train_loader = DataLoader(
|
train_loader = DataLoader(
|
||||||
|
@ -69,10 +69,9 @@ https://github.com/user-attachments/assets/88b98128-636e-43bc-a419-b1b1403c2055
|
|||||||
|
|
||||||
- 公开MiniMind模型代码(包含Dense和MoE模型)、Pretrain、SFT指令微调、LoRA微调、DPO偏好优化的全过程代码、数据集和来源。
|
- 公开MiniMind模型代码(包含Dense和MoE模型)、Pretrain、SFT指令微调、LoRA微调、DPO偏好优化的全过程代码、数据集和来源。
|
||||||
- 兼容`transformers`、`accelerate`、`trl`、`peft`等流行框架。
|
- 兼容`transformers`、`accelerate`、`trl`、`peft`等流行框架。
|
||||||
- 训练支持单机单卡、单机多卡(DDP、DeepSpeed)训练。训练过程中支持在任意位置停止,及在任意位置继续训练。
|
- 训练支持单机单卡、单机多卡(DDP、DeepSpeed)训练,使用wandb可视化训练流程。支持在任意位置停止,及在任意位置继续训练。
|
||||||
- 在Ceval数据集上进行模型测试的代码。
|
- 在Ceval数据集上进行模型测试的代码。
|
||||||
- 实现Openai-Api基本的chat接口,便于集成到第三方ChatUI使用(FastGPT、Open-WebUI等)。
|
- 实现Openai-Api基本的chat接口,便于集成到第三方ChatUI使用(FastGPT、Open-WebUI等)。
|
||||||
- 使用wandb可视化训练流程。
|
|
||||||
|
|
||||||
希望此开源项目可以帮助LLM初学者快速入门!
|
希望此开源项目可以帮助LLM初学者快速入门!
|
||||||
|
|
||||||
|
@ -75,13 +75,10 @@ The project includes:
|
|||||||
- Public MiniMind model code (including Dense and MoE models), code for Pretrain, SFT instruction fine-tuning, LoRA
|
- Public MiniMind model code (including Dense and MoE models), code for Pretrain, SFT instruction fine-tuning, LoRA
|
||||||
fine-tuning, and DPO preference optimization, along with datasets and sources.
|
fine-tuning, and DPO preference optimization, along with datasets and sources.
|
||||||
- Compatibility with popular frameworks such as `transformers`, `accelerate`, `trl`, and `peft`.
|
- Compatibility with popular frameworks such as `transformers`, `accelerate`, `trl`, and `peft`.
|
||||||
- Training support for single-GPU and multi-GPU setups(DDP、DeepSpeed). The training process allows for stopping and
|
- Training support for single-GPU and multi-GPU setups(DDP、DeepSpeed), Use wandb to visualize the training process. The training process allows for stopping and resuming at any point.
|
||||||
resuming at any
|
|
||||||
point.
|
|
||||||
- Code for testing the model on the Ceval dataset.
|
- Code for testing the model on the Ceval dataset.
|
||||||
- Implementation of a basic chat interface compatible with OpenAI's API, facilitating integration into third-party Chat
|
- Implementation of a basic chat interface compatible with OpenAI's API, facilitating integration into third-party Chat
|
||||||
UIs (such as FastGPT, Open-WebUI, etc.).
|
UIs (such as FastGPT, Open-WebUI, etc.).
|
||||||
- Use wandb to visualize the training process.
|
|
||||||
|
|
||||||
We hope this open-source project helps LLM beginners get started quickly!
|
We hope this open-source project helps LLM beginners get started quickly!
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user