diff --git a/train_embedding.py b/train_embedding.py index fbb363a..7a4493d 100644 --- a/train_embedding.py +++ b/train_embedding.py @@ -12,31 +12,122 @@ import torch.distributed as dist from torch import optim, nn from torch.nn.parallel import DistributedDataParallel from torch.optim.lr_scheduler import CosineAnnealingLR -from torch.utils.data import DataLoader, DistributedSampler +from torch.utils.data import DataLoader, DistributedSampler, Dataset from contextlib import nullcontext +import random +import numpy as np +import json from transformers import AutoTokenizer # Removed: from model.model import MiniMindLM from model.LMConfig import LMConfig -from model.dataset import PretrainDataset +# from model.dataset import PretrainDataset warnings.filterwarnings('ignore') -# Define a simple model for pretraining embeddings -class EmbeddingPretrainer(nn.Module): +# Define a Word2Vec-style CBOW model +class CBOWModel(nn.Module): def __init__(self, config: LMConfig): super().__init__() - self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) - self.lm_head = nn.Linear(config.dim, config.vocab_size, bias=False) - # Tie weights (optional but common) - # self.tok_embeddings.weight = self.lm_head.weight + self.vocab_size = config.vocab_size + self.embedding_dim = config.dim + + # Input embeddings (context words) + self.embeddings = nn.Embedding(config.vocab_size, config.dim) + + # Output weights for target prediction + self.output_weights = nn.Linear(config.dim, config.vocab_size, bias=False) + + # Initialize weights + self.init_weights() + + def init_weights(self): + # Xavier initialization for better convergence + nn.init.xavier_uniform_(self.embeddings.weight) + nn.init.xavier_uniform_(self.output_weights.weight) + + def forward(self, context_words): + # context_words shape: [batch_size, context_size],context_size可变 + + # Get embeddings for all context words + embeds = self.embeddings(context_words) # [batch_size, context_size, embedding_dim] + + # Average the context word embeddings along context dimension + embeds = torch.mean(embeds, dim=1) # [batch_size, embedding_dim] + + # Predict the target word + output = self.output_weights(embeds) # [batch_size, vocab_size] + + return output - def forward(self, input_ids): - hidden_states = self.tok_embeddings(input_ids) - logits = self.lm_head(hidden_states) - return logits + +# Word2Vec CBOW dataset +class CBOWDataset(Dataset): + def __init__(self, data_path, tokenizer, max_length=512, window_size=5): + super().__init__() + self.tokenizer = tokenizer + self.window_size = window_size + self.max_length = max_length + self.samples = self.load_data(data_path) + + def load_data(self, path): + samples = [] + with open(path, 'r', encoding='utf-8') as f: + for line_num, line in enumerate(f, 1): + data = json.loads(line.strip()) + samples.append(data) + return samples + + def __len__(self): + return len(self.samples) + + def __getitem__(self, index): + sample = self.samples[index] + + # 构建输入文本 + text = f"{self.tokenizer.bos_token}{str(sample['text'])}{self.tokenizer.eos_token}" + encoding = self.tokenizer( + text, + max_length=self.max_length, + padding='max_length', + truncation=True, + return_tensors='pt' + ) + + # 获取token ids + input_ids = encoding.input_ids.squeeze() + # 过滤掉padding + attention_mask = encoding.attention_mask.squeeze() + valid_indices = torch.where(attention_mask == 1)[0] + valid_input_ids = input_ids[valid_indices] + + # 确保有足够的token进行CBOW训练 + if len(valid_input_ids) <= 2 * self.window_size + 1: + # 如果token不足,随机选择一个不同的样本 + return self.__getitem__(random.randint(0, len(self.samples) - 1)) + + # 随机选择一个中心位置(不包括首尾的特殊token) + # 确保中心位置两边都有至少window_size个token + min_center_pos = self.window_size + 1 # 避开起始token + max_center_pos = len(valid_input_ids) - self.window_size - 1 # 避开结束token + + if max_center_pos <= min_center_pos: + return self.__getitem__(random.randint(0, len(self.samples) - 1)) + + center_pos = random.randint(min_center_pos, max_center_pos) + + # 目标词(中心词) + target = valid_input_ids[center_pos].unsqueeze(0) + + # 上下文词(中心词前后的词) + context = torch.cat([ + valid_input_ids[center_pos - self.window_size:center_pos], + valid_input_ids[center_pos + 1:center_pos + self.window_size + 1] + ]) + + return context, target def Logger(content): @@ -52,14 +143,16 @@ def get_lr(current_step, total_steps, lr): def train_epoch(epoch, wandb): - loss_fct = nn.CrossEntropyLoss(reduction='none', ignore_index=0) # Assuming 0 is pad_token_id + loss_fct = nn.CrossEntropyLoss() start_time = time.time() - for step, (X, Y, loss_mask) in enumerate(train_loader): + total_loss = 0 + total_samples = 0 + + for step, (context, target) in enumerate(train_loader): try: # 将数据加载到设备上 - X = X.to(args.device) - Y = Y.to(args.device) - loss_mask = loss_mask.to(args.device) + context = context.to(args.device) + target = target.to(args.device) # 更新学习率 lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch, args.learning_rate) @@ -67,28 +160,28 @@ def train_epoch(epoch, wandb): param_group['lr'] = lr with ctx: - logits = model(X) # Model returns logits directly - loss = loss_fct( - logits.view(-1, logits.size(-1)), - Y.view(-1) - ).view(Y.size()) - loss = (loss * loss_mask).sum() / loss_mask.sum() - # Removed: loss += res.aux_loss + # Forward pass + logits = model(context) # [batch_size, vocab_size] + # target是[batch_size, 1],需要squeeze成[batch_size]来匹配CrossEntropyLoss的预期 + loss = loss_fct(logits, target.squeeze()) loss = loss / args.accumulation_steps # Print data types for debugging - if step == 0 and (not ddp or dist.get_rank() == 0): # Print only for the first step of the first epoch on the main process + if step == 0 and (not ddp or dist.get_rank() == 0): Logger("---- Data Type Check ----") - Logger(f"X.dtype: {X.dtype}") - if hasattr(model, 'module'): # DDP case + Logger(f"context.dtype: {context.dtype}") + Logger(f"context.shape: {context.shape}") + Logger(f"target.dtype: {target.dtype}") + Logger(f"target.shape: {target.shape}") + if hasattr(model, 'module'): # DDP case Logger(f"Model parameter dtype: {next(model.module.parameters()).dtype}") - else: # Non-DDP case + else: # Non-DDP case Logger(f"Model parameter dtype: {next(model.parameters()).dtype}") - Logger(f"logits.dtype: {logits.dtype}") # Changed from res.logits.dtype + Logger(f"logits.dtype: {logits.dtype}") + Logger(f"logits.shape: {logits.shape}") Logger(f"loss.dtype: {loss.dtype}") Logger("-------------------------") - scaler.scale(loss).backward() if (step + 1) % args.accumulation_steps == 0: @@ -99,52 +192,43 @@ def train_epoch(epoch, wandb): scaler.update() optimizer.zero_grad(set_to_none=True) + + total_loss += loss.item() * args.accumulation_steps + total_samples += 1 # 打印日志 if step % args.log_interval == 0: spend_time = time.time() - start_time + avg_loss = total_loss / total_samples if total_samples > 0 else 0 Logger( 'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.12f} epoch_Time:{}min:'.format( epoch + 1, args.epochs, step, iter_per_epoch, - loss.item() * args.accumulation_steps, + avg_loss, optimizer.param_groups[-1]['lr'], spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60)) if (wandb is not None) and (not ddp or dist.get_rank() == 0): - wandb.log({"loss": loss.item() * args.accumulation_steps, + wandb.log({"loss": avg_loss, "lr": optimizer.param_groups[-1]['lr'], "epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60}) - # 保存模型 - if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0): - model.eval() - # Modified checkpoint path and content - ckp = f'{args.save_dir}/pretrained_embedding_dim{lm_config.dim}_vocab{lm_config.vocab_size}.pth' - - if isinstance(model, torch.nn.parallel.DistributedDataParallel): - embedding_state_dict = model.module.tok_embeddings.state_dict() - else: - embedding_state_dict = model.tok_embeddings.state_dict() - - torch.save(embedding_state_dict, ckp) - Logger(f"Saved pretrained embedding to {ckp}") - model.train() - except Exception as e: print(f"Error occurred: {str(e)}") + import traceback + traceback.print_exc() # Modified checkpoint path for error - save_path = f'{args.save_dir}/pretrained_embedding_dim{lm_config.dim}_vocab{lm_config.vocab_size}_ERROR.pth' - if os.path.exists(save_path): + save_path = f'{args.save_dir}/word2vec_embedding_dim{lm_config.dim}_vocab{lm_config.vocab_size}_ERROR.pth' + if os.path.exists(save_path): os.remove(save_path) if isinstance(model, torch.nn.parallel.DistributedDataParallel): - state_dict = model.module.tok_embeddings.state_dict() + state_dict = model.module.embeddings.state_dict() else: - state_dict = model.tok_embeddings.state_dict() - torch.save(state_dict, save_path) # Save embedding state dict on error + state_dict = model.embeddings.state_dict() + torch.save(state_dict, save_path) for name, param in model.named_parameters(): if param.grad is not None and torch.isnan(param.grad).any(): @@ -156,9 +240,23 @@ def train_epoch(epoch, wandb): print(f"Parameter {name} gradients: {param.grad}") raise ValueError("NaN gradient detected") + + # Save model once at the end of each epoch + if not ddp or dist.get_rank() == 0: + model.eval() + ckp = f'{args.save_dir}/word2vec_embedding_dim{lm_config.dim}_vocab{lm_config.vocab_size}_epoch{epoch+1}.pth' + + if isinstance(model, torch.nn.parallel.DistributedDataParallel): + embedding_state_dict = model.module.embeddings.state_dict() + else: + embedding_state_dict = model.embeddings.state_dict() + + torch.save(embedding_state_dict, ckp) + Logger(f"Saved word2vec embedding for epoch {epoch+1} to {ckp}") + model.train() -def init_model(lm_config_params: LMConfig): # Renamed for clarity +def init_model(lm_config_params: LMConfig): # 加载tokenizer tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer') # Update vocab_size in lm_config if tokenizer has a different one @@ -166,10 +264,10 @@ def init_model(lm_config_params: LMConfig): # Renamed for clarity Logger(f"Updating lm_config.vocab_size from {lm_config_params.vocab_size} to {tokenizer.vocab_size} based on tokenizer.") lm_config_params.vocab_size = tokenizer.vocab_size - # 加载模型 - model = EmbeddingPretrainer(lm_config_params).to(args.device) # Use EmbeddingPretrainer + # 加载word2vec CBOW模型 + model = CBOWModel(lm_config_params).to(args.device) # 打印模型参数 - Logger(f'EmbeddingPretrainer total parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} Million') + Logger(f'CBOW Model total parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} Million') return model, tokenizer @@ -187,32 +285,27 @@ def init_distributed_mode(): # torchrun --nproc_per_node 2 train_embedding.py if __name__ == "__main__": - parser = argparse.ArgumentParser(description="MiniMind Embedding Pretraining") # Changed description - parser.add_argument("--out_dir", type=str, default="out_embedding") # Changed default out_dir - # 若要以最快速度实现zero则epochs设置为1轮;否则应当利用有限的数据训练2~6个epochs。 + parser = argparse.ArgumentParser(description="MiniMind Word2Vec Embedding Training") + parser.add_argument("--out_dir", type=str, default="out_word2vec") parser.add_argument("--epochs", type=int, default=3) - parser.add_argument("--batch_size", type=int, default=32) # Smaller batch size might be needed if memory is an issue + parser.add_argument("--batch_size", type=int, default=256) parser.add_argument("--learning_rate", type=float, default=5e-4) - parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu") #如果GPU可用,则使用GPU,否则使用CPU。 + parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu") parser.add_argument("--dtype", type=str, default="bfloat16") parser.add_argument("--use_wandb", default=False, action="store_true") - parser.add_argument("--wandb_project", type=str, default="MiniMind-Embedding-Pretrain") # Changed project name - parser.add_argument("--num_workers", type=int, default=8) + parser.add_argument("--wandb_project", type=str, default="MiniMind-Word2Vec-Training") + parser.add_argument("--num_workers", type=int, default=32) parser.add_argument("--ddp", action="store_true") - parser.add_argument("--accumulation_steps", type=int, default=8) #梯度累积步数,用于控制梯度更新频率。 - parser.add_argument("--grad_clip", type=float, default=1.0) #梯度裁剪阈值,用于防止梯度爆炸。 - # parser.add_argument("--warmup_iters", type=int, default=0) #预热迭代次数,用于控制学习率预热过程。 (Can be kept or removed) - parser.add_argument("--log_interval", type=int, default=100) #日志打印间隔,用于控制日志打印的频率。 - parser.add_argument("--save_interval", type=int, default=100) #模型保存间隔,用于控制模型保存的频率。 - parser.add_argument('--local_rank', type=int, default=-1) #本地进程编号,用于分布式训练。 - parser.add_argument('--dim', default=768, type=int) #模型维度,用于控制模型的大小。 - # Removed n_layers, use_moe as they are not relevant for EmbeddingPretrainer - # parser.add_argument('--n_layers', default=8, type=int) - parser.add_argument('--max_seq_len', default=512, type=int) #最大序列长度,用于控制输入序列的最大长度。 - # parser.add_argument('--use_moe', default=False, type=bool) - parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") #数据路径,用于控制数据集的路径。 - # Add vocab_size to args, though it will be overridden by tokenizer if different + parser.add_argument("--accumulation_steps", type=int, default=8) + parser.add_argument("--grad_clip", type=float, default=1.0) + parser.add_argument("--log_interval", type=int, default=100) + parser.add_argument("--save_interval", type=int, default=100) + parser.add_argument('--local_rank', type=int, default=-1) + parser.add_argument('--dim', default=768, type=int) + parser.add_argument('--max_seq_len', default=512, type=int) + parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") parser.add_argument('--vocab_size', default=6400, type=int) + parser.add_argument('--window_size', default=5, type=int) args = parser.parse_args() @@ -222,24 +315,21 @@ if __name__ == "__main__": dim=args.dim, vocab_size=args.vocab_size, # Will be updated by tokenizer max_seq_len=args.max_seq_len, - # n_layers, n_heads, etc. are not directly used by EmbeddingPretrainer but LMConfig requires them - # We can set them to default or minimal values if they cause issues, or modify LMConfig - # For now, using defaults from LMConfig definition for unneeded params. n_layers=1, # Minimal n_heads=1, # Minimal n_kv_heads=1 #Minimal ) - args.save_dir = os.path.join(args.out_dir) #创建保存目录。 - os.makedirs(args.save_dir, exist_ok=True) #创建保存目录。 - os.makedirs(args.out_dir, exist_ok=True) #创建输出目录。 - tokens_per_iter = args.batch_size * lm_config.max_seq_len #计算每个迭代步骤的token数量。 + args.save_dir = os.path.join(args.out_dir) + os.makedirs(args.save_dir, exist_ok=True) + os.makedirs(args.out_dir, exist_ok=True) + tokens_per_iter = args.batch_size * lm_config.max_seq_len print(f"tokens_per_iter: {tokens_per_iter}") - device_type = "cuda" if "cuda" in args.device else "cpu" #确定设备类型。 + device_type = "cuda" if "cuda" in args.device else "cpu" # Determine the torch dtype pt_dtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[args.dtype] - args.wandb_run_name = f"MiniMind-Embedding-Pretrain-Dim-{args.dim}-Vocab-{lm_config.vocab_size}" # Updated run name + args.wandb_run_name = f"MiniMind-Word2Vec-Dim-{args.dim}-Vocab-{lm_config.vocab_size}-Window-{args.window_size}" ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast(dtype=pt_dtype) @@ -270,39 +360,59 @@ if __name__ == "__main__": # Update lm_config vocab_size again after tokenizer to ensure consistency for save path name if lm_config.vocab_size != tokenizer.vocab_size: lm_config.vocab_size = tokenizer.vocab_size - args.wandb_run_name = f"MiniMind-Embedding-Pretrain-Dim-{args.dim}-Vocab-{lm_config.vocab_size}" + args.wandb_run_name = f"MiniMind-Word2Vec-Dim-{args.dim}-Vocab-{lm_config.vocab_size}-Window-{args.window_size}" if wandb is not None and (not ddp or dist.get_rank() == 0): wandb.config.update({'vocab_size': lm_config.vocab_size, 'wandb_run_name': args.wandb_run_name}, allow_val_change=True) + # 添加collate函数处理不同长度的序列 + def collate_cbow_batch(batch): + # 提取context和target + contexts, targets = zip(*batch) + + # 获取当前批次中最长的context长度 + max_len = max([ctx.size(0) for ctx in contexts]) + + # 创建填充后的tensor + padded_contexts = torch.zeros(len(contexts), max_len, dtype=torch.long) + + # 填充每个context + for i, ctx in enumerate(contexts): + ctx_len = ctx.size(0) + padded_contexts[i, :ctx_len] = ctx + + # 将targets stack成一个tensor + stacked_targets = torch.stack(targets) + + return padded_contexts, stacked_targets - train_ds = PretrainDataset(args.data_path, tokenizer, max_length=lm_config.max_seq_len) - train_sampler = DistributedSampler(train_ds, shuffle=True, seed=base_seed) if ddp else None # Added shuffle and seed + # Create Word2Vec CBOW dataset + train_ds = CBOWDataset(args.data_path, tokenizer, max_length=lm_config.max_seq_len, window_size=args.window_size) + train_sampler = DistributedSampler(train_ds, shuffle=True, seed=base_seed) if ddp else None train_loader = DataLoader( train_ds, batch_size=args.batch_size, pin_memory=True, - drop_last=True, # Set to True for more stable training step counts - shuffle=(train_sampler is None), # Shuffle only if not using DDP sampler + drop_last=True, + shuffle=(train_sampler is None), num_workers=args.num_workers, - sampler=train_sampler + sampler=train_sampler, + collate_fn=collate_cbow_batch ) - scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16'])) # bfloat16 also uses scaler + scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16'])) optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate) if ddp: - # model._ddp_params_and_buffers_to_ignore = {"pos_cis"} # Not relevant for EmbeddingPretrainer model = DistributedDataParallel(model, device_ids=[ddp_local_rank]) - # torch.autograd.set_detect_anomaly(True) # Can be enabled for debugging iter_per_epoch = len(train_loader) - Logger(f"Starting training for {args.epochs} epochs with {iter_per_epoch} iterations per epoch.") + Logger(f"Starting Word2Vec CBOW training for {args.epochs} epochs with {iter_per_epoch} iterations per epoch.") for epoch in range(args.epochs): if ddp: - train_sampler.set_epoch(epoch) # Important for DDP shuffling + train_sampler.set_epoch(epoch) train_epoch(epoch, wandb) - if wandb is not None and (not ddp or dist.get_rank() == 0) : + if wandb is not None and (not ddp or dist.get_rank() == 0): wandb.finish() - Logger("Embedding pretraining finished.") \ No newline at end of file + Logger("Word2Vec embedding training finished.") \ No newline at end of file