From 288ab3ccb8042a4fc3e2d8c93546e52ab8ffb37b Mon Sep 17 00:00:00 2001
From: gongjy <2474590974@qq.com>
Date: Fri, 6 Sep 2024 10:48:30 +0800
Subject: [PATCH] update readme
---
README.md | 44 +++++++++++++++++++-------------------------
README_en.md | 3 ++-
2 files changed, 21 insertions(+), 26 deletions(-)
diff --git a/README.md b/README.md
index 3981458..4f571e2 100644
--- a/README.md
+++ b/README.md
@@ -1,5 +1,3 @@
-
-

@@ -35,14 +33,13 @@
---
-
- https://github.com/user-attachments/assets/88b98128-636e-43bc-a419-b1b1403c2055
- [Bilibili视频链接](https://www.bilibili.com/video/BV12dHPeqE72/?share_source=copy_web&vd_source=670c2504f88726f8cf4a21ef6147c0e8)
-
+https://github.com/user-attachments/assets/88b98128-636e-43bc-a419-b1b1403c2055
+
+[Bilibili视频链接](https://www.bilibili.com/video/BV12dHPeqE72/?share_source=copy_web&vd_source=670c2504f88726f8cf4a21ef6147c0e8)
+
-
# 📌 Introduction
大语言模型(LLM)领域,如 GPT、LLaMA、GLM 等,虽然它们效果惊艳,
@@ -85,10 +82,10 @@
2024-09-01 (new🎉)
- 更新MiniMind-V1 (108M)模型,采用minimind_tokenizer,预训练轮次3 + SFT轮次10,更充分训练,性能更强。
-
+
- 项目已部署至ModelScope创空间,可以在此网站上体验:
-- [ModelScope在线体验](https://www.modelscope.cn/studios/gongjy/minimind)
+- [ModelScope在线体验](https://www.modelscope.cn/studios/gongjy/minimind)
@@ -116,7 +113,7 @@
Hugging Face
[MiniMind (HuggingFace)](https://huggingface.co/collections/jingyaogong/minimind-66caf8d999f5c7fa64f399e5)
-
+

[MiniMind (ModelScope)](https://www.modelscope.cn/models/gongjy/MiniMind-V1)
@@ -132,11 +129,14 @@ git clone https://huggingface.co/jingyaogong/minimind-v1
# step 2
python 2-eval.py
```
+
或者启动streamlit,启动网页聊天界面
+
```bash
# or step 3, use streamlit
streamlit run fast_inference.py
```
+

@@ -214,7 +214,7 @@ streamlit run fast_inference.py
强大的开源模型例如01万物、千问、chatglm、mistral、Llama3等,它们的tokenizer词表长度如下:
| Tokenizer 模型 | 词表大小 | 来源 |
- |--------------------|---------|------------|
+ |--------------------|---------|------------|
| yi tokenizer | 64,000 | 01万物(中国) |
| qwen2 tokenizer | 151,643 | 阿里云(中国) |
| glm tokenizer | 151,329 | 智谱AI(中国) |
@@ -230,7 +230,8 @@ streamlit run fast_inference.py
---
-- 📙【Pretrain数据】:[seq-monkey通用文本数据集](https://github.com/mobvoi/seq-monkey-data/blob/main/docs/pretrain_open_corpus.md)
+-
+📙【Pretrain数据】:[seq-monkey通用文本数据集](https://github.com/mobvoi/seq-monkey-data/blob/main/docs/pretrain_open_corpus.md)
是由多种公开来源的数据(如网页、百科、博客、开源代码、书籍等)汇总清洗而成。
整理成统一的JSONL格式,并经过了严格的筛选和去重,确保数据的全面性、规模、可信性和高质量。
总量大约在10B token,适合中文大语言模型的预训练。
@@ -376,7 +377,7 @@ CPU: Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz
| minimind-small | 56M | d_model=640
n_layers=8 | [链接](https://pan.baidu.com/s/1nJuOpnu5115FDuz6Ewbeqg?pwd=6666) | [链接](https://pan.baidu.com/s/1lRX0IcpjNFSySioeCfifRQ?pwd=6666) | [链接](https://pan.baidu.com/s/1LzVxBpL0phtGUH267Undqw?pwd=6666) |
| minimind | 218M | d_model=1024
n_layers=16 | [链接](https://pan.baidu.com/s/1jzA7uLEi-Jen2fW5olCmEg?pwd=6666) | [链接](https://pan.baidu.com/s/1Hvt0Q_UB_uW2sWTw6w1zRQ?pwd=6666) | [链接](https://pan.baidu.com/s/1fau9eat3lXilnrG3XNhG5Q?pwd=6666) |
| minimind-MoE | 166M | d_model=1024
n_layers=8
share+route=2+4 | [链接](https://pan.baidu.com/s/11CneDVTkw2Y6lNilQX5bWw?pwd=6666) | [链接](https://pan.baidu.com/s/1fRq4MHZec3z-oLK6sCzj_A?pwd=6666) | [链接](https://pan.baidu.com/s/1HC2KSM_-RHRtgv7ZDkKI9Q?pwd=6666) |
-| minimind-V1 | 108M | d_model=768
n_layers=16 | - | [链接](https://pan.baidu.com/s/1p713loS7EfwHQf3G9eYI3Q?pwd=6666) | [链接](https://pan.baidu.com/s/12iHGpAs6R0kqsOnGtgK6vQ?pwd=6666) |
+| minimind-V1 | 108M | d_model=768
n_layers=16 | - | [链接](https://pan.baidu.com/s/1p713loS7EfwHQf3G9eYI3Q?pwd=6666) | [链接](https://pan.baidu.com/s/12iHGpAs6R0kqsOnGtgK6vQ?pwd=6666) |
---
@@ -554,7 +555,8 @@ MobileLLM提出架构的深度比宽度更重要,「深而窄」的「瘦长
* minimind-MoE(0.16B)表现很差,甚至不如它同配置的dense模型minimind(0.05B)
,其实这并非MoE的锅。同样是因为偷懒提前kill腾出资源给小模型,但是MoE模型多专家模式需要的训练轮次本来就需要酌情更高,在epochs设置为2时训练的极其不充分。minimind不久前实验阶段在Yi
tokenizer上试验过MoE的充分训练版本,可以做到比dense表现肉眼可见的好。现在先这样了hh,日后腾出服务器再训练更新v2 v3版本。
-* F模型的回答看起来是这里最完美的,尽管存在些许幻觉瞎编的情况。但GPT-4o和kimi的评分都一致认为它“信息过度冗长,且有重复内容,存在幻觉”。其实这种评价太严格了,100个字中有10个字是幻觉,就很容易把它归到0分。由于F模型训练文本默认长度更长,数据集大得多,所以回答的看起来很完备,在体积近似的情况下,数据比模型更重要得多。
+*
+F模型的回答看起来是这里最完美的,尽管存在些许幻觉瞎编的情况。但GPT-4o和kimi的评分都一致认为它“信息过度冗长,且有重复内容,存在幻觉”。其实这种评价太严格了,100个字中有10个字是幻觉,就很容易把它归到0分。由于F模型训练文本默认长度更长,数据集大得多,所以回答的看起来很完备,在体积近似的情况下,数据比模型更重要得多。
> 🙋♂️个人主观评价:F>D>A≈B>C>E
@@ -673,7 +675,8 @@ minimind模型本身没有使用较大的数据集训练,也没有针对回答
* [./export_model.py](./export_model.py)可以导出模型到transformers格式,推送到huggingface
-* MiniMind的huggingface集合地址:[MiniMind](https://huggingface.co/collections/jingyaogong/minimind-66caf8d999f5c7fa64f399e5)
+*
+MiniMind的huggingface集合地址:[MiniMind](https://huggingface.co/collections/jingyaogong/minimind-66caf8d999f5c7fa64f399e5)
---
@@ -725,24 +728,18 @@ minimind模型本身没有使用较大的数据集训练,也没有针对回答

-
-
-
-
# 📌 Acknowledge
> [!NOTE]
> 如果您觉得 `MiniMind`对您有所帮助,请在 GitHub 上给一个⭐
> 您的支持是我们持续改进项目的动力!篇幅不短水平有限难免纰漏,欢迎在issue交流和指正。
-
-
## 🤝贡献者
-
+
## 🫶感谢支持!
@@ -751,11 +748,8 @@ minimind模型本身没有使用较大的数据集训练,也没有针对回答
[](https://github.com/jingyaogong/minimind/network/members)
-

-
-
# License
This repository is licensed under the [Apache-2.0 License](LICENSE).
diff --git a/README_en.md b/README_en.md
index c4c61c8..d6bcd9c 100644
--- a/README_en.md
+++ b/README_en.md
@@ -816,8 +816,9 @@ This suggests that the model performs well in logical reasoning, foundational sc
## 🤝Contributors
+
-
+