diff --git a/4-lora_sft.py b/4-lora_sft.py index f6328f1..c5e0948 100644 --- a/4-lora_sft.py +++ b/4-lora_sft.py @@ -16,6 +16,7 @@ from peft import get_peft_model, LoraConfig, TaskType from torch.utils.data import DataLoader from model.LMConfig import LMConfig from model.dataset import SFTDataset +from model.model import Transformer warnings.filterwarnings('ignore') @@ -96,8 +97,6 @@ def find_all_linear_names(model): names = name.split('.') lora_module_names.add(names[0] if len(names) == 1 else names[-1]) - if 'lm_head' in lora_module_names: - lora_module_names.remove('lm_head') return list(lora_module_names) @@ -109,11 +108,7 @@ def init_model(): target_modules = find_all_linear_names(model) peft_config = LoraConfig( - task_type=TaskType.CAUSAL_LM, r=8, - lora_alpha=16, - lora_dropout=0.1, - inference_mode=False, target_modules=target_modules ) model = get_peft_model(model, peft_config) @@ -126,7 +121,7 @@ if __name__ == "__main__": parser = argparse.ArgumentParser(description="MiniMind LoRA Fine-tuning") parser.add_argument("--out_dir", type=str, default="out", help="Output directory") parser.add_argument("--epochs", type=int, default=20, help="Number of epochs") - parser.add_argument("--batch_size", type=int, default=16, help="Batch size") + parser.add_argument("--batch_size", type=int, default=32, help="Batch size") parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate") parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use") parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type") @@ -162,7 +157,7 @@ if __name__ == "__main__": model, tokenizer = init_model() - df = pd.read_csv('./dataset/sft_data.csv') + df = pd.read_csv('./dataset/sft_data_single.csv') df = df.sample(frac=1.0) train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len) train_loader = DataLoader( @@ -175,7 +170,10 @@ if __name__ == "__main__": ) scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16'])) - optimizer = optim.Adam(model.parameters(), lr=args.learning_rate) + optimizer = optim.Adam( + filter(lambda p: p.requires_grad, model.parameters()), + lr=args.learning_rate + ) if False and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2: Logger("compiling the model... (takes a ~minute)")