添加了argparse,方便命令行输入参数

This commit is contained in:
Yu Chengzhang 2024-09-24 12:41:58 +08:00
parent ef9a592d14
commit 51dcf51c5d
3 changed files with 206 additions and 219 deletions

View File

@ -1,5 +1,6 @@
import os
import platform
import argparse
import time
import math
import warnings
@ -23,66 +24,65 @@ def Logger(content):
def get_lr(it, all):
warmup_iters = 0
warmup_iters = args.warmup_iters
lr_decay_iters = all
min_lr = learning_rate / 10
min_lr = args.learning_rate / 10
if it < warmup_iters:
return learning_rate * it / warmup_iters
return args.learning_rate * it / warmup_iters
if it > lr_decay_iters:
return min_lr
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (learning_rate - min_lr)
return min_lr + coeff * (args.learning_rate - min_lr)
def train_epoch(epoch, wandb, accumulation_steps=8):
def train_epoch(epoch, wandb):
start_time = time.time()
for step, (X, Y) in enumerate(train_loader):
X = X.to(device)
Y = Y.to(device)
X = X.to(args.device)
Y = Y.to(args.device)
lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch)
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
with ctx:
out = model(X, Y)
loss = out.last_loss / accumulation_steps
loss = out.last_loss / args.accumulation_steps
scaler.scale(loss).backward()
if (step + 1) % accumulation_steps == 0:
if (step + 1) % args.accumulation_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
if step % 100 == 0:
if step % args.log_interval == 0:
spend_time = time.time() - start_time
Logger(
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
epoch,
epochs,
args.epochs,
step,
iter_per_epoch,
loss.item() * accumulation_steps,
loss.item() * args.accumulation_steps,
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
if wandb != None:
wandb.log({"loss": loss.item() * accumulation_steps,
if wandb is not None:
wandb.log({"loss": loss.item() * args.accumulation_steps,
"lr": optimizer.param_groups[-1]['lr'],
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
if (step + 1) % 1000 == 0 and (not ddp or dist.get_rank() == 0):
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
model.eval()
# torch.save(model.state_dict(), '{}/iter_{}.pth'.format(save_dir, int(step + epoch * iter_per_epoch)))
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'{save_dir}/pretrain_{lm_config.dim}{moe_path}.pth'
ckp = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}.pth'
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
state_dict = model.module.state_dict()
@ -97,17 +97,8 @@ def init_model():
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
# model init
model = Transformer(lm_config).to(device)
model = Transformer(lm_config).to(args.device)
moe_path = '_moe' if lm_config.use_moe else ''
# ckp = f'{save_dir}/pretrain_{lm_config.dim}{moe_path}.pth'
#
# state_dict = torch.load(ckp, map_location=device)
# unwanted_prefix = '_orig_mod.'
# for k, v in list(state_dict.items()):
# if k.startswith(unwanted_prefix):
# state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
# model.load_state_dict(state_dict, strict=False)
Logger(f'LLM总参数量{count_parameters(model) / 1e6:.3f} 百万')
return model
@ -125,81 +116,78 @@ def init_distributed_mode():
torch.cuda.set_device(DEVICE)
# torchrun --nproc_per_node 2 1-pretrain.py
# I/O
if __name__ == "__main__":
# -----------------------------------------------------------------------------
parser = argparse.ArgumentParser(description="MiniMind Pretraining")
parser.add_argument("--out_dir", type=str, default="out", help="Output directory")
parser.add_argument("--epochs", type=int, default=20, help="Number of epochs")
parser.add_argument("--batch_size", type=int, default=64, help="Batch size")
parser.add_argument("--learning_rate", type=float, default=2e-4, help="Learning rate")
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type")
parser.add_argument("--use_wandb", action="store_true", help="Use Weights & Biases")
parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain", help="Weights & Biases project name")
parser.add_argument("--num_workers", type=int, default=8, help="Number of workers for data loading")
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_data.bin", help="Path to training data")
parser.add_argument("--ddp", action="store_true", help="Use DistributedDataParallel")
parser.add_argument("--accumulation_steps", type=int, default=8, help="Gradient accumulation steps")
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold")
parser.add_argument("--warmup_iters", type=int, default=0, help="Number of warmup iterations")
parser.add_argument("--log_interval", type=int, default=100, help="Logging interval")
parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval")
args = parser.parse_args()
lm_config = LMConfig()
max_seq_len = lm_config.max_seq_len
out_dir = 'out'
epochs = 20
batch_size = 64
learning_rate = 2e-4
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
dtype = 'bfloat16'
save_dir = os.path.join(out_dir)
os.makedirs(save_dir, exist_ok=True)
os.makedirs(out_dir, exist_ok=True)
tokens_per_iter = batch_size * max_seq_len
args.save_dir = os.path.join(args.out_dir)
os.makedirs(args.save_dir, exist_ok=True)
os.makedirs(args.out_dir, exist_ok=True)
tokens_per_iter = args.batch_size * max_seq_len
torch.manual_seed(1337)
device_type = device if "cuda" in device else "cpu"
device_type = "cuda" if "cuda" in args.device else "cpu"
use_wandb = True #是否使用wandb
wandb_project = "MiniMind-Pretrain"
wandb_run_name = f"MiniMind-Pretrain-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}"
args.wandb_run_name = f"MiniMind-Pretrain-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
ctx = (
nullcontext()
if device_type == "cpu"
else torch.cuda.amp.autocast()
)
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
ddp_local_rank, DEVICE = 0, "cuda:0"
if ddp:
init_distributed_mode()
device = torch.device(DEVICE)
args.device = torch.device(DEVICE)
if use_wandb and (not ddp or ddp_local_rank == 0):
if args.use_wandb and (not ddp or ddp_local_rank == 0):
import wandb
wandb.init(project=wandb_project, name=wandb_run_name)
wandb.init(project=args.wandb_project, name=args.wandb_run_name)
else:
wandb = None
# -----------------------------------------------------------------------------
# -----init dataloader------
data_path_list = ['./dataset/pretrain_data.bin']
data_path_list = [args.data_path]
train_ds = PretrainDataset(data_path_list, max_length=max_seq_len, memmap=True)
train_sampler = DistributedSampler(train_ds) if ddp else None
num_workers = 8 # 可以根据系统的 CPU 核心数来调整
train_loader = DataLoader(
train_ds,
batch_size=batch_size,
batch_size=args.batch_size,
pin_memory=True,
drop_last=False,
shuffle=False,
num_workers=num_workers,
num_workers=args.num_workers,
sampler=train_sampler
)
# init model
model = init_model()
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == dtype))
# optimizer
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# compile the model
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype == args.dtype))
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
if False and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:
Logger("compiling the model... (takes a ~minute)")
unoptimized_model = model
model = torch.compile(model)
if ddp:
# Ignore the freqs_cis buffer so that DDP does not broadcast it at
# construction time since NCCL does not support ComplexFloat
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
# training loop
iter_per_epoch = len(train_loader)
for epoch in range(epochs):
for epoch in range(args.epochs):
train_epoch(epoch, wandb)

View File

@ -1,5 +1,6 @@
import os
import platform
import argparse
import time
import math
import warnings
@ -12,7 +13,6 @@ from contextlib import nullcontext
from torch import optim
from torch.nn.parallel import DistributedDataParallel
from torch.optim.lr_scheduler import CosineAnnealingLR
from torch.utils.data import DataLoader, DistributedSampler
from transformers import AutoTokenizer, AutoModel
from model.model import Transformer
@ -28,28 +28,27 @@ def Logger(content):
def get_lr(it, all):
warmup_iters = 0
warmup_iters = args.warmup_iters
lr_decay_iters = all
min_lr = learning_rate / epochs
min_lr = args.learning_rate / 10
if it < warmup_iters:
return learning_rate * it / warmup_iters
return args.learning_rate * it / warmup_iters
if it > lr_decay_iters:
return min_lr
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (learning_rate - min_lr)
return min_lr + coeff * (args.learning_rate - min_lr)
# ------------------------------------------------------------------------------
def train_epoch(epoch, wandb):
start_time = time.time()
for step, (X, Y, loss_mask) in enumerate(train_loader):
X = X.to(device)
Y = Y.to(device)
loss_mask = loss_mask.to(device)
lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch)
X = X.to(args.device)
Y = Y.to(args.device)
loss_mask = loss_mask.to(args.device)
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
@ -59,41 +58,38 @@ def train_epoch(epoch, wandb):
loss_mask = loss_mask.view(-1)
loss = torch.sum(loss * loss_mask) / loss_mask.sum()
# Backward pass
scaler.scale(loss).backward()
# Unscale gradients and clip them
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
if (step + 1) % args.accumulation_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
# Update parameters
scaler.step(optimizer)
scaler.update()
scaler.step(optimizer)
scaler.update()
# Zero the gradients
optimizer.zero_grad(set_to_none=True)
optimizer.zero_grad(set_to_none=True)
# 打印日志
if step % 100 == 0:
if step % args.log_interval == 0:
spend_time = time.time() - start_time
Logger(
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.8f} epoch_Time:{}min:'.format(
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
epoch,
epochs,
args.epochs,
step,
iter_per_epoch,
loss,
loss.item(),
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
if use_wandb != None:
wandb.log({"loss": loss, "lr": optimizer.param_groups[-1]['lr'],
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
if wandb is not None:
wandb.log({"loss": loss.item(),
"lr": optimizer.param_groups[-1]['lr'],
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
if (step + 1) % 1000 == 0 and (not ddp or dist.get_rank() == 0):
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
model.eval()
# torch.save(model.state_dict(), '{}/sft_iter_{}.pth'.format(save_dir, int(step + epoch * iter_per_epoch)))
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'{save_dir}/full_sft_{lm_config.dim}{moe_path}.pth'
ckp = f'{args.save_dir}/full_sft_{lm_config.dim}{moe_path}.pth'
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
state_dict = model.module.state_dict()
else:
@ -103,7 +99,7 @@ def train_epoch(epoch, wandb):
model.train()
def init_model(lm_config):
def init_model():
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
model_from = 1 # 1从权重2用transformers
@ -114,7 +110,7 @@ def init_model(lm_config):
model = Transformer(lm_config)
moe_path = '_moe' if lm_config.use_moe else ''
ckp = f'./out/pretrain_{lm_config.dim}{moe_path}.pth'
state_dict = torch.load(ckp, map_location=device)
state_dict = torch.load(ckp, map_location=args.device)
unwanted_prefix = '_orig_mod.'
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
@ -124,7 +120,7 @@ def init_model(lm_config):
model = AutoModel.from_pretrained('./minimind', trust_remote_code=True)
Logger(f'LLM总参数量{count_parameters(model) / 1e6:.3f} 百万')
model = model.to(device)
model = model.to(args.device)
return model, tokenizer
@ -141,83 +137,78 @@ def init_distributed_mode():
torch.cuda.set_device(DEVICE)
# I/O
if __name__ == "__main__":
# -----------------------------------------------------------------------------
parser = argparse.ArgumentParser(description="MiniMind Full SFT")
parser.add_argument("--out_dir", type=str, default="out", help="Output directory")
parser.add_argument("--epochs", type=int, default=19, help="Number of epochs")
parser.add_argument("--batch_size", type=int, default=40, help="Batch size")
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate")
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type")
parser.add_argument("--use_wandb", action="store_true", help="Use Weights & Biases")
parser.add_argument("--wandb_project", type=str, default="MiniMind-Full-SFT", help="Weights & Biases project name")
parser.add_argument("--num_workers", type=int, default=8, help="Number of workers for data loading")
parser.add_argument("--ddp", action="store_true", help="Use DistributedDataParallel")
parser.add_argument("--accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold")
parser.add_argument("--warmup_iters", type=int, default=0, help="Number of warmup iterations")
parser.add_argument("--log_interval", type=int, default=100, help="Logging interval")
parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval")
args = parser.parse_args()
lm_config = LMConfig()
max_seq_len = lm_config.max_seq_len
out_dir = 'out'
epochs = 19
gradient_accumulation_steps = 1
batch_size = 40
learning_rate = 1e-4
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
dtype = 'bfloat16'
# dtype = 'float16'
save_dir = os.path.join(out_dir)
os.makedirs(save_dir, exist_ok=True)
tokens_per_iter = gradient_accumulation_steps * batch_size * max_seq_len
os.makedirs(out_dir, exist_ok=True)
args.save_dir = os.path.join(args.out_dir)
os.makedirs(args.save_dir, exist_ok=True)
os.makedirs(args.out_dir, exist_ok=True)
tokens_per_iter = args.batch_size * max_seq_len
torch.manual_seed(1337)
device_type = device if "cuda" in device else "cpu"
device_type = "cuda" if "cuda" in args.device else "cpu"
use_wandb = True #是否使用wandb
wandb_project = "MiniMind-Full-SFT"
wandb_run_name = f"MiniMind-Full-SFT-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}"
if use_wandb:
import wandb
wandb.init(project=wandb_project, name=wandb_run_name)
else:
wandb = None
args.wandb_run_name = f"MiniMind-Full-SFT-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
ctx = (
nullcontext()
if device_type == "cpu"
else torch.cuda.amp.autocast()
)
### ddp config
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
ddp_local_rank, DEVICE = 0, "cuda:0"
if ddp:
init_distributed_mode()
device = torch.device(DEVICE)
# -----------------------------------------------------------------------------
args.device = torch.device(DEVICE)
if args.use_wandb and (not ddp or ddp_local_rank == 0):
import wandb
wandb.init(project=args.wandb_project, name=args.wandb_run_name)
else:
wandb = None
model, tokenizer = init_model()
model, tokenizer = init_model(lm_config)
# -----init dataloader------
df = pd.read_csv('./dataset/sft_data_single.csv')
df = df.sample(frac=1.0)
train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len)
train_sampler = DistributedSampler(train_ds) if ddp else None
train_loader = DataLoader(
train_ds,
batch_size=batch_size,
pin_memory=False,
batch_size=args.batch_size,
pin_memory=True,
drop_last=False,
shuffle=False,
num_workers=8,
num_workers=args.num_workers,
sampler=train_sampler
)
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == dtype))
# optimizer
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype == args.dtype))
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
iter_per_epoch = len(train_loader)
# compile the model
if False and not lm_config.use_moe and platform.system() != 'Windows' and float(
torch.__version__.split('.')[0]) >= 2:
if False and not lm_config.use_moe and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:
Logger("compiling the model... (takes a ~minute)")
unoptimized_model = model
model = torch.compile(model) # requires PyTorch 2.0
model = torch.compile(model)
if ddp:
# Ignore the pos_cis buffer so that DDP does not broadcast it at
# construction time since NCCL does not support ComplexFloat
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
# training loop
for epoch in range(epochs,wandb):
train_epoch(epoch)
iter_per_epoch = len(train_loader)
for epoch in range(args.epochs):
train_epoch(epoch, wandb)

View File

@ -1,5 +1,6 @@
import os
import platform
import argparse
import time
import math
import warnings
@ -16,32 +17,36 @@ from torch.utils.data import DataLoader
from model.LMConfig import LMConfig
from model.dataset import SFTDataset
warnings.filterwarnings('ignore', category=UserWarning)
warnings.filterwarnings('ignore')
def get_lr(it):
warmup_iters = 1000
lr_decay_iters = 80000
min_lr = 1e-5
def Logger(content):
print(content)
def get_lr(it, all):
warmup_iters = args.warmup_iters
lr_decay_iters = all
min_lr = args.learning_rate / 10
if it < warmup_iters:
return learning_rate * it / warmup_iters
return args.learning_rate * it / warmup_iters
if it > lr_decay_iters:
return min_lr
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
assert 0 <= decay_ratio <= 1
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
return min_lr + coeff * (learning_rate - min_lr)
return min_lr + coeff * (args.learning_rate - min_lr)
# ------------------------------------------------------------------------------
def train_epoch(epoch, wandb):
start_time = time.time()
for step, (X, Y, loss_mask) in enumerate(train_loader):
X = X.to(device)
Y = Y.to(device)
loss_mask = loss_mask.to(device)
lr = get_lr(epoch * iter_per_epoch + step)
X = X.to(args.device)
Y = Y.to(args.device)
loss_mask = loss_mask.to(args.device)
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
@ -50,31 +55,37 @@ def train_epoch(epoch, wandb):
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), Y.view(-1), ignore_index=0, reduction='none')
loss_mask = loss_mask.view(-1)
loss = torch.sum(loss * loss_mask) / loss_mask.sum()
loss = loss / args.accumulation_steps
scaler.scale(loss).backward()
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
if (step + 1) % args.accumulation_steps == 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
scaler.step(optimizer)
scaler.update()
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad(set_to_none=True)
optimizer.zero_grad(set_to_none=True)
if step % 100 == 0:
if step % args.log_interval == 0:
spend_time = time.time() - start_time
print(
Logger(
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
epoch,
epochs,
args.epochs,
step,
iter_per_epoch,
loss.item(),
loss.item() * args.accumulation_steps,
optimizer.param_groups[-1]['lr'],
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
if use_wandb != None:
wandb.log({"loss": loss.item(), "lr": optimizer.param_groups[-1]['lr'],
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
if wandb is not None:
wandb.log({"loss": loss.item() * args.accumulation_steps,
"lr": optimizer.param_groups[-1]['lr'],
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
if (step + 1) % args.save_interval == 0:
model.save_pretrained(args.save_dir)
def find_all_linear_names(model):
@ -94,7 +105,7 @@ def init_model():
model_name_or_path = "./minimind"
tokenizer_name_or_path = "./minimind"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, trust_remote_code=True, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True).to(device)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True).to(args.device)
target_modules = find_all_linear_names(model)
peft_config = LoraConfig(
@ -107,73 +118,70 @@ def init_model():
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
model = model.to(device)
model = model.to(args.device)
return model, tokenizer
# I/O
if __name__ == "__main__":
# -----------------------------------------------------------------------------
parser = argparse.ArgumentParser(description="MiniMind LoRA Fine-tuning")
parser.add_argument("--out_dir", type=str, default="out", help="Output directory")
parser.add_argument("--epochs", type=int, default=20, help="Number of epochs")
parser.add_argument("--batch_size", type=int, default=16, help="Batch size")
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate")
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type")
parser.add_argument("--use_wandb", action="store_true", help="Use Weights & Biases")
parser.add_argument("--wandb_project", type=str, default="MiniMind-LoRA", help="Weights & Biases project name")
parser.add_argument("--num_workers", type=int, default=0, help="Number of workers for data loading")
parser.add_argument("--accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold")
parser.add_argument("--warmup_iters", type=int, default=1000, help="Number of warmup iterations")
parser.add_argument("--log_interval", type=int, default=100, help="Logging interval")
parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval")
args = parser.parse_args()
lm_config = LMConfig()
max_seq_len = lm_config.max_seq_len
out_dir = 'out'
epochs = 20
gradient_accumulation_steps = 1
batch_size = 16
learning_rate = 1e-4
weight_decay = 1e-1
device = 'cuda:0'
dtype = 'bfloat16'
save_dir = os.path.join(out_dir)
os.makedirs(save_dir, exist_ok=True)
tokens_per_iter = gradient_accumulation_steps * batch_size * max_seq_len
os.makedirs(out_dir, exist_ok=True)
args.save_dir = os.path.join(args.out_dir)
os.makedirs(args.save_dir, exist_ok=True)
os.makedirs(args.out_dir, exist_ok=True)
tokens_per_iter = args.batch_size * max_seq_len
torch.manual_seed(1337)
device_type = device if "cuda" in device else "cpu"
device_type = "cuda" if "cuda" in args.device else "cpu"
use_wandb = True #是否使用wandb
wandb_project = "MiniMind-LoRA"
wandb_run_name = f"MiniMind-LoRA-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}"
if use_wandb:
args.wandb_run_name = f"MiniMind-LoRA-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
if args.use_wandb:
import wandb
wandb.init(project=wandb_project, name=wandb_run_name)
wandb.init(project=args.wandb_project, name=args.wandb_run_name)
else:
wandb = None
ctx = (
nullcontext()
if device_type == "cpu"
else torch.cuda.amp.autocast()
)
# -----------------------------------------------------------------------------
model, tokenizer = init_model()
# -----init dataloader------
df = pd.read_csv('./dataset/sft_data.csv')
df = df.sample(frac=1.0)
train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len)
train_loader = DataLoader(
train_ds,
batch_size=batch_size,
pin_memory=False,
batch_size=args.batch_size,
pin_memory=True,
drop_last=False,
shuffle=False,
num_workers=0,
num_workers=args.num_workers,
)
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
# optimizer
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
iter_per_epoch = len(train_loader)
# compile the model
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype == 'float16'))
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
if False and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:
print("compiling the model... (takes a ~minute)")
Logger("compiling the model... (takes a ~minute)")
unoptimized_model = model
model = torch.compile(model)
raw_model = model
# training loop
for epoch in range(epochs):
iter_per_epoch = len(train_loader)
for epoch in range(args.epochs):
train_epoch(epoch, wandb)
model.save_pretrained('minimind')