diff --git a/1-pretrain.py b/1-pretrain.py index 56c937d..d6bfff6 100644 --- a/1-pretrain.py +++ b/1-pretrain.py @@ -1,5 +1,6 @@ import os import platform +import argparse import time import math import warnings @@ -23,66 +24,65 @@ def Logger(content): def get_lr(it, all): - warmup_iters = 0 + warmup_iters = args.warmup_iters lr_decay_iters = all - min_lr = learning_rate / 10 + min_lr = args.learning_rate / 10 if it < warmup_iters: - return learning_rate * it / warmup_iters + return args.learning_rate * it / warmup_iters if it > lr_decay_iters: return min_lr decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters) assert 0 <= decay_ratio <= 1 coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) - return min_lr + coeff * (learning_rate - min_lr) + return min_lr + coeff * (args.learning_rate - min_lr) -def train_epoch(epoch, wandb, accumulation_steps=8): +def train_epoch(epoch, wandb): start_time = time.time() for step, (X, Y) in enumerate(train_loader): - X = X.to(device) - Y = Y.to(device) + X = X.to(args.device) + Y = Y.to(args.device) - lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch) + lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch) for param_group in optimizer.param_groups: param_group['lr'] = lr with ctx: out = model(X, Y) - loss = out.last_loss / accumulation_steps + loss = out.last_loss / args.accumulation_steps scaler.scale(loss).backward() - if (step + 1) % accumulation_steps == 0: + if (step + 1) % args.accumulation_steps == 0: scaler.unscale_(optimizer) - torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) + torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip) scaler.step(optimizer) scaler.update() optimizer.zero_grad(set_to_none=True) - if step % 100 == 0: + if step % args.log_interval == 0: spend_time = time.time() - start_time Logger( 'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format( epoch, - epochs, + args.epochs, step, iter_per_epoch, - loss.item() * accumulation_steps, + loss.item() * args.accumulation_steps, optimizer.param_groups[-1]['lr'], spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60)) - if wandb != None: - wandb.log({"loss": loss.item() * accumulation_steps, + if wandb is not None: + wandb.log({"loss": loss.item() * args.accumulation_steps, "lr": optimizer.param_groups[-1]['lr'], "epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60}) - if (step + 1) % 1000 == 0 and (not ddp or dist.get_rank() == 0): + if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0): model.eval() - # torch.save(model.state_dict(), '{}/iter_{}.pth'.format(save_dir, int(step + epoch * iter_per_epoch))) moe_path = '_moe' if lm_config.use_moe else '' - ckp = f'{save_dir}/pretrain_{lm_config.dim}{moe_path}.pth' + ckp = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}.pth' if isinstance(model, torch.nn.parallel.DistributedDataParallel): state_dict = model.module.state_dict() @@ -97,17 +97,8 @@ def init_model(): def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) - # model init - model = Transformer(lm_config).to(device) + model = Transformer(lm_config).to(args.device) moe_path = '_moe' if lm_config.use_moe else '' - # ckp = f'{save_dir}/pretrain_{lm_config.dim}{moe_path}.pth' - # - # state_dict = torch.load(ckp, map_location=device) - # unwanted_prefix = '_orig_mod.' - # for k, v in list(state_dict.items()): - # if k.startswith(unwanted_prefix): - # state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k) - # model.load_state_dict(state_dict, strict=False) Logger(f'LLM总参数量:{count_parameters(model) / 1e6:.3f} 百万') return model @@ -125,81 +116,78 @@ def init_distributed_mode(): torch.cuda.set_device(DEVICE) # torchrun --nproc_per_node 2 1-pretrain.py -# I/O if __name__ == "__main__": - # ----------------------------------------------------------------------------- + parser = argparse.ArgumentParser(description="MiniMind Pretraining") + parser.add_argument("--out_dir", type=str, default="out", help="Output directory") + parser.add_argument("--epochs", type=int, default=20, help="Number of epochs") + parser.add_argument("--batch_size", type=int, default=64, help="Batch size") + parser.add_argument("--learning_rate", type=float, default=2e-4, help="Learning rate") + parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use") + parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type") + parser.add_argument("--use_wandb", action="store_true", help="Use Weights & Biases") + parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain", help="Weights & Biases project name") + parser.add_argument("--num_workers", type=int, default=8, help="Number of workers for data loading") + parser.add_argument("--data_path", type=str, default="./dataset/pretrain_data.bin", help="Path to training data") + parser.add_argument("--ddp", action="store_true", help="Use DistributedDataParallel") + parser.add_argument("--accumulation_steps", type=int, default=8, help="Gradient accumulation steps") + parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold") + parser.add_argument("--warmup_iters", type=int, default=0, help="Number of warmup iterations") + parser.add_argument("--log_interval", type=int, default=100, help="Logging interval") + parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval") + + args = parser.parse_args() + lm_config = LMConfig() max_seq_len = lm_config.max_seq_len - out_dir = 'out' - epochs = 20 - batch_size = 64 - learning_rate = 2e-4 - device = 'cuda:0' if torch.cuda.is_available() else 'cpu' - dtype = 'bfloat16' - save_dir = os.path.join(out_dir) - os.makedirs(save_dir, exist_ok=True) - os.makedirs(out_dir, exist_ok=True) - tokens_per_iter = batch_size * max_seq_len + args.save_dir = os.path.join(args.out_dir) + os.makedirs(args.save_dir, exist_ok=True) + os.makedirs(args.out_dir, exist_ok=True) + tokens_per_iter = args.batch_size * max_seq_len torch.manual_seed(1337) - device_type = device if "cuda" in device else "cpu" + device_type = "cuda" if "cuda" in args.device else "cpu" - use_wandb = True #是否使用wandb - wandb_project = "MiniMind-Pretrain" - wandb_run_name = f"MiniMind-Pretrain-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}" + args.wandb_run_name = f"MiniMind-Pretrain-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}" - - ctx = ( - nullcontext() - if device_type == "cpu" - else torch.cuda.amp.autocast() - ) + ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast() ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run? ddp_local_rank, DEVICE = 0, "cuda:0" if ddp: init_distributed_mode() - device = torch.device(DEVICE) + args.device = torch.device(DEVICE) - if use_wandb and (not ddp or ddp_local_rank == 0): + if args.use_wandb and (not ddp or ddp_local_rank == 0): import wandb - wandb.init(project=wandb_project, name=wandb_run_name) + wandb.init(project=args.wandb_project, name=args.wandb_run_name) else: wandb = None - # ----------------------------------------------------------------------------- - # -----init dataloader------ - data_path_list = ['./dataset/pretrain_data.bin'] + data_path_list = [args.data_path] train_ds = PretrainDataset(data_path_list, max_length=max_seq_len, memmap=True) train_sampler = DistributedSampler(train_ds) if ddp else None - num_workers = 8 # 可以根据系统的 CPU 核心数来调整 train_loader = DataLoader( train_ds, - batch_size=batch_size, + batch_size=args.batch_size, pin_memory=True, drop_last=False, shuffle=False, - num_workers=num_workers, + num_workers=args.num_workers, sampler=train_sampler ) - # init model model = init_model() - scaler = torch.cuda.amp.GradScaler(enabled=(dtype == dtype)) - # optimizer - optimizer = optim.Adam(model.parameters(), lr=learning_rate) - # compile the model + scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype == args.dtype)) + optimizer = optim.Adam(model.parameters(), lr=args.learning_rate) + if False and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2: Logger("compiling the model... (takes a ~minute)") unoptimized_model = model model = torch.compile(model) if ddp: - # Ignore the freqs_cis buffer so that DDP does not broadcast it at - # construction time since NCCL does not support ComplexFloat model._ddp_params_and_buffers_to_ignore = {"pos_cis"} model = DistributedDataParallel(model, device_ids=[ddp_local_rank]) - # training loop iter_per_epoch = len(train_loader) - for epoch in range(epochs): + for epoch in range(args.epochs): train_epoch(epoch, wandb) diff --git a/3-full_sft.py b/3-full_sft.py index c50dedf..fc58bb3 100644 --- a/3-full_sft.py +++ b/3-full_sft.py @@ -1,5 +1,6 @@ import os import platform +import argparse import time import math import warnings @@ -12,7 +13,6 @@ from contextlib import nullcontext from torch import optim from torch.nn.parallel import DistributedDataParallel -from torch.optim.lr_scheduler import CosineAnnealingLR from torch.utils.data import DataLoader, DistributedSampler from transformers import AutoTokenizer, AutoModel from model.model import Transformer @@ -28,28 +28,27 @@ def Logger(content): def get_lr(it, all): - warmup_iters = 0 + warmup_iters = args.warmup_iters lr_decay_iters = all - min_lr = learning_rate / epochs + min_lr = args.learning_rate / 10 if it < warmup_iters: - return learning_rate * it / warmup_iters + return args.learning_rate * it / warmup_iters if it > lr_decay_iters: return min_lr decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters) assert 0 <= decay_ratio <= 1 coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) - return min_lr + coeff * (learning_rate - min_lr) + return min_lr + coeff * (args.learning_rate - min_lr) -# ------------------------------------------------------------------------------ def train_epoch(epoch, wandb): start_time = time.time() for step, (X, Y, loss_mask) in enumerate(train_loader): - X = X.to(device) - Y = Y.to(device) - loss_mask = loss_mask.to(device) - lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch) + X = X.to(args.device) + Y = Y.to(args.device) + loss_mask = loss_mask.to(args.device) + lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch) for param_group in optimizer.param_groups: param_group['lr'] = lr @@ -59,41 +58,38 @@ def train_epoch(epoch, wandb): loss_mask = loss_mask.view(-1) loss = torch.sum(loss * loss_mask) / loss_mask.sum() - # Backward pass scaler.scale(loss).backward() - # Unscale gradients and clip them - scaler.unscale_(optimizer) - torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) + if (step + 1) % args.accumulation_steps == 0: + scaler.unscale_(optimizer) + torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip) - # Update parameters - scaler.step(optimizer) - scaler.update() + scaler.step(optimizer) + scaler.update() - # Zero the gradients - optimizer.zero_grad(set_to_none=True) + optimizer.zero_grad(set_to_none=True) - # 打印日志 - if step % 100 == 0: + if step % args.log_interval == 0: spend_time = time.time() - start_time Logger( - 'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.8f} epoch_Time:{}min:'.format( + 'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format( epoch, - epochs, + args.epochs, step, iter_per_epoch, - loss, + loss.item(), optimizer.param_groups[-1]['lr'], spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60)) - if use_wandb != None: - wandb.log({"loss": loss, "lr": optimizer.param_groups[-1]['lr'], - "epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60}) + if wandb is not None: + wandb.log({"loss": loss.item(), + "lr": optimizer.param_groups[-1]['lr'], + "epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60}) - if (step + 1) % 1000 == 0 and (not ddp or dist.get_rank() == 0): + if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0): model.eval() - # torch.save(model.state_dict(), '{}/sft_iter_{}.pth'.format(save_dir, int(step + epoch * iter_per_epoch))) moe_path = '_moe' if lm_config.use_moe else '' - ckp = f'{save_dir}/full_sft_{lm_config.dim}{moe_path}.pth' + ckp = f'{args.save_dir}/full_sft_{lm_config.dim}{moe_path}.pth' + if isinstance(model, torch.nn.parallel.DistributedDataParallel): state_dict = model.module.state_dict() else: @@ -103,7 +99,7 @@ def train_epoch(epoch, wandb): model.train() -def init_model(lm_config): +def init_model(): tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer') model_from = 1 # 1从权重,2用transformers @@ -114,7 +110,7 @@ def init_model(lm_config): model = Transformer(lm_config) moe_path = '_moe' if lm_config.use_moe else '' ckp = f'./out/pretrain_{lm_config.dim}{moe_path}.pth' - state_dict = torch.load(ckp, map_location=device) + state_dict = torch.load(ckp, map_location=args.device) unwanted_prefix = '_orig_mod.' for k, v in list(state_dict.items()): if k.startswith(unwanted_prefix): @@ -124,7 +120,7 @@ def init_model(lm_config): model = AutoModel.from_pretrained('./minimind', trust_remote_code=True) Logger(f'LLM总参数量:{count_parameters(model) / 1e6:.3f} 百万') - model = model.to(device) + model = model.to(args.device) return model, tokenizer @@ -141,83 +137,78 @@ def init_distributed_mode(): torch.cuda.set_device(DEVICE) -# I/O if __name__ == "__main__": - # ----------------------------------------------------------------------------- + parser = argparse.ArgumentParser(description="MiniMind Full SFT") + parser.add_argument("--out_dir", type=str, default="out", help="Output directory") + parser.add_argument("--epochs", type=int, default=19, help="Number of epochs") + parser.add_argument("--batch_size", type=int, default=40, help="Batch size") + parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate") + parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use") + parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type") + parser.add_argument("--use_wandb", action="store_true", help="Use Weights & Biases") + parser.add_argument("--wandb_project", type=str, default="MiniMind-Full-SFT", help="Weights & Biases project name") + parser.add_argument("--num_workers", type=int, default=8, help="Number of workers for data loading") + parser.add_argument("--ddp", action="store_true", help="Use DistributedDataParallel") + parser.add_argument("--accumulation_steps", type=int, default=1, help="Gradient accumulation steps") + parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold") + parser.add_argument("--warmup_iters", type=int, default=0, help="Number of warmup iterations") + parser.add_argument("--log_interval", type=int, default=100, help="Logging interval") + parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval") + + args = parser.parse_args() + lm_config = LMConfig() max_seq_len = lm_config.max_seq_len - out_dir = 'out' - epochs = 19 - gradient_accumulation_steps = 1 - batch_size = 40 - learning_rate = 1e-4 - device = 'cuda:0' if torch.cuda.is_available() else 'cpu' - dtype = 'bfloat16' - # dtype = 'float16' - save_dir = os.path.join(out_dir) - os.makedirs(save_dir, exist_ok=True) - tokens_per_iter = gradient_accumulation_steps * batch_size * max_seq_len - os.makedirs(out_dir, exist_ok=True) + args.save_dir = os.path.join(args.out_dir) + os.makedirs(args.save_dir, exist_ok=True) + os.makedirs(args.out_dir, exist_ok=True) + tokens_per_iter = args.batch_size * max_seq_len torch.manual_seed(1337) - device_type = device if "cuda" in device else "cpu" + device_type = "cuda" if "cuda" in args.device else "cpu" - use_wandb = True #是否使用wandb - wandb_project = "MiniMind-Full-SFT" - wandb_run_name = f"MiniMind-Full-SFT-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}" - if use_wandb: - import wandb - wandb.init(project=wandb_project, name=wandb_run_name) - else: - wandb = None + args.wandb_run_name = f"MiniMind-Full-SFT-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}" - ctx = ( - nullcontext() - if device_type == "cpu" - else torch.cuda.amp.autocast() - ) - - ### ddp config + ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast() ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run? ddp_local_rank, DEVICE = 0, "cuda:0" if ddp: init_distributed_mode() - device = torch.device(DEVICE) - # ----------------------------------------------------------------------------- + args.device = torch.device(DEVICE) + + if args.use_wandb and (not ddp or ddp_local_rank == 0): + import wandb + wandb.init(project=args.wandb_project, name=args.wandb_run_name) + else: + wandb = None + + model, tokenizer = init_model() - model, tokenizer = init_model(lm_config) - # -----init dataloader------ df = pd.read_csv('./dataset/sft_data_single.csv') df = df.sample(frac=1.0) train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len) train_sampler = DistributedSampler(train_ds) if ddp else None train_loader = DataLoader( train_ds, - batch_size=batch_size, - pin_memory=False, + batch_size=args.batch_size, + pin_memory=True, drop_last=False, shuffle=False, - num_workers=8, + num_workers=args.num_workers, sampler=train_sampler ) - scaler = torch.cuda.amp.GradScaler(enabled=(dtype == dtype)) - # optimizer - optimizer = optim.Adam(model.parameters(), lr=learning_rate) + scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype == args.dtype)) + optimizer = optim.Adam(model.parameters(), lr=args.learning_rate) - iter_per_epoch = len(train_loader) - # compile the model - if False and not lm_config.use_moe and platform.system() != 'Windows' and float( - torch.__version__.split('.')[0]) >= 2: + if False and not lm_config.use_moe and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2: Logger("compiling the model... (takes a ~minute)") unoptimized_model = model - model = torch.compile(model) # requires PyTorch 2.0 + model = torch.compile(model) if ddp: - # Ignore the pos_cis buffer so that DDP does not broadcast it at - # construction time since NCCL does not support ComplexFloat model._ddp_params_and_buffers_to_ignore = {"pos_cis"} model = DistributedDataParallel(model, device_ids=[ddp_local_rank]) - # training loop - for epoch in range(epochs,wandb): - train_epoch(epoch) + iter_per_epoch = len(train_loader) + for epoch in range(args.epochs): + train_epoch(epoch, wandb) diff --git a/4-lora_sft.py b/4-lora_sft.py index 128041a..44d69ba 100644 --- a/4-lora_sft.py +++ b/4-lora_sft.py @@ -1,5 +1,6 @@ import os import platform +import argparse import time import math import warnings @@ -16,32 +17,36 @@ from torch.utils.data import DataLoader from model.LMConfig import LMConfig from model.dataset import SFTDataset -warnings.filterwarnings('ignore', category=UserWarning) +warnings.filterwarnings('ignore') -def get_lr(it): - warmup_iters = 1000 - lr_decay_iters = 80000 - min_lr = 1e-5 +def Logger(content): + print(content) + + +def get_lr(it, all): + warmup_iters = args.warmup_iters + lr_decay_iters = all + min_lr = args.learning_rate / 10 if it < warmup_iters: - return learning_rate * it / warmup_iters + return args.learning_rate * it / warmup_iters if it > lr_decay_iters: return min_lr decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters) assert 0 <= decay_ratio <= 1 coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) - return min_lr + coeff * (learning_rate - min_lr) + return min_lr + coeff * (args.learning_rate - min_lr) -# ------------------------------------------------------------------------------ def train_epoch(epoch, wandb): start_time = time.time() for step, (X, Y, loss_mask) in enumerate(train_loader): - X = X.to(device) - Y = Y.to(device) - loss_mask = loss_mask.to(device) - lr = get_lr(epoch * iter_per_epoch + step) + X = X.to(args.device) + Y = Y.to(args.device) + loss_mask = loss_mask.to(args.device) + + lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch) for param_group in optimizer.param_groups: param_group['lr'] = lr @@ -50,31 +55,37 @@ def train_epoch(epoch, wandb): loss = F.cross_entropy(logits.view(-1, logits.size(-1)), Y.view(-1), ignore_index=0, reduction='none') loss_mask = loss_mask.view(-1) loss = torch.sum(loss * loss_mask) / loss_mask.sum() + loss = loss / args.accumulation_steps scaler.scale(loss).backward() - scaler.unscale_(optimizer) - torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) + if (step + 1) % args.accumulation_steps == 0: + scaler.unscale_(optimizer) + torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip) - scaler.step(optimizer) - scaler.update() + scaler.step(optimizer) + scaler.update() - optimizer.zero_grad(set_to_none=True) + optimizer.zero_grad(set_to_none=True) - if step % 100 == 0: + if step % args.log_interval == 0: spend_time = time.time() - start_time - print( + Logger( 'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format( epoch, - epochs, + args.epochs, step, iter_per_epoch, - loss.item(), + loss.item() * args.accumulation_steps, optimizer.param_groups[-1]['lr'], spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60)) - if use_wandb != None: - wandb.log({"loss": loss.item(), "lr": optimizer.param_groups[-1]['lr'], - "epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60}) + if wandb is not None: + wandb.log({"loss": loss.item() * args.accumulation_steps, + "lr": optimizer.param_groups[-1]['lr'], + "epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60}) + + if (step + 1) % args.save_interval == 0: + model.save_pretrained(args.save_dir) def find_all_linear_names(model): @@ -94,7 +105,7 @@ def init_model(): model_name_or_path = "./minimind" tokenizer_name_or_path = "./minimind" tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, trust_remote_code=True, use_fast=False) - model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True).to(device) + model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True).to(args.device) target_modules = find_all_linear_names(model) peft_config = LoraConfig( @@ -107,73 +118,70 @@ def init_model(): ) model = get_peft_model(model, peft_config) model.print_trainable_parameters() - model = model.to(device) + model = model.to(args.device) return model, tokenizer -# I/O if __name__ == "__main__": - # ----------------------------------------------------------------------------- + parser = argparse.ArgumentParser(description="MiniMind LoRA Fine-tuning") + parser.add_argument("--out_dir", type=str, default="out", help="Output directory") + parser.add_argument("--epochs", type=int, default=20, help="Number of epochs") + parser.add_argument("--batch_size", type=int, default=16, help="Batch size") + parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate") + parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use") + parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type") + parser.add_argument("--use_wandb", action="store_true", help="Use Weights & Biases") + parser.add_argument("--wandb_project", type=str, default="MiniMind-LoRA", help="Weights & Biases project name") + parser.add_argument("--num_workers", type=int, default=0, help="Number of workers for data loading") + parser.add_argument("--accumulation_steps", type=int, default=1, help="Gradient accumulation steps") + parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold") + parser.add_argument("--warmup_iters", type=int, default=1000, help="Number of warmup iterations") + parser.add_argument("--log_interval", type=int, default=100, help="Logging interval") + parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval") + + args = parser.parse_args() + lm_config = LMConfig() max_seq_len = lm_config.max_seq_len - out_dir = 'out' - epochs = 20 - gradient_accumulation_steps = 1 - batch_size = 16 - learning_rate = 1e-4 - weight_decay = 1e-1 - device = 'cuda:0' - dtype = 'bfloat16' - save_dir = os.path.join(out_dir) - os.makedirs(save_dir, exist_ok=True) - tokens_per_iter = gradient_accumulation_steps * batch_size * max_seq_len - os.makedirs(out_dir, exist_ok=True) + args.save_dir = os.path.join(args.out_dir) + os.makedirs(args.save_dir, exist_ok=True) + os.makedirs(args.out_dir, exist_ok=True) + tokens_per_iter = args.batch_size * max_seq_len torch.manual_seed(1337) - device_type = device if "cuda" in device else "cpu" + device_type = "cuda" if "cuda" in args.device else "cpu" - use_wandb = True #是否使用wandb - wandb_project = "MiniMind-LoRA" - wandb_run_name = f"MiniMind-LoRA-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}" - if use_wandb: + args.wandb_run_name = f"MiniMind-LoRA-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}" + + ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast() + + if args.use_wandb: import wandb - wandb.init(project=wandb_project, name=wandb_run_name) + wandb.init(project=args.wandb_project, name=args.wandb_run_name) else: wandb = None - ctx = ( - nullcontext() - if device_type == "cpu" - else torch.cuda.amp.autocast() - ) - # ----------------------------------------------------------------------------- - model, tokenizer = init_model() - # -----init dataloader------ df = pd.read_csv('./dataset/sft_data.csv') df = df.sample(frac=1.0) train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len) train_loader = DataLoader( train_ds, - batch_size=batch_size, - pin_memory=False, + batch_size=args.batch_size, + pin_memory=True, drop_last=False, shuffle=False, - num_workers=0, + num_workers=args.num_workers, ) - scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16')) - # optimizer - optimizer = optim.Adam(model.parameters(), lr=learning_rate) - iter_per_epoch = len(train_loader) - # compile the model + scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype == 'float16')) + optimizer = optim.Adam(model.parameters(), lr=args.learning_rate) + if False and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2: - print("compiling the model... (takes a ~minute)") + Logger("compiling the model... (takes a ~minute)") unoptimized_model = model model = torch.compile(model) - raw_model = model - # training loop - for epoch in range(epochs): + iter_per_epoch = len(train_loader) + for epoch in range(args.epochs): train_epoch(epoch, wandb) - model.save_pretrained('minimind')