添加了argparse,方便命令行输入参数
This commit is contained in:
parent
ef9a592d14
commit
51dcf51c5d
126
1-pretrain.py
126
1-pretrain.py
@ -1,5 +1,6 @@
|
|||||||
import os
|
import os
|
||||||
import platform
|
import platform
|
||||||
|
import argparse
|
||||||
import time
|
import time
|
||||||
import math
|
import math
|
||||||
import warnings
|
import warnings
|
||||||
@ -23,66 +24,65 @@ def Logger(content):
|
|||||||
|
|
||||||
|
|
||||||
def get_lr(it, all):
|
def get_lr(it, all):
|
||||||
warmup_iters = 0
|
warmup_iters = args.warmup_iters
|
||||||
lr_decay_iters = all
|
lr_decay_iters = all
|
||||||
min_lr = learning_rate / 10
|
min_lr = args.learning_rate / 10
|
||||||
|
|
||||||
if it < warmup_iters:
|
if it < warmup_iters:
|
||||||
return learning_rate * it / warmup_iters
|
return args.learning_rate * it / warmup_iters
|
||||||
if it > lr_decay_iters:
|
if it > lr_decay_iters:
|
||||||
return min_lr
|
return min_lr
|
||||||
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
|
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
|
||||||
assert 0 <= decay_ratio <= 1
|
assert 0 <= decay_ratio <= 1
|
||||||
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
||||||
return min_lr + coeff * (learning_rate - min_lr)
|
return min_lr + coeff * (args.learning_rate - min_lr)
|
||||||
|
|
||||||
|
|
||||||
def train_epoch(epoch, wandb, accumulation_steps=8):
|
def train_epoch(epoch, wandb):
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
for step, (X, Y) in enumerate(train_loader):
|
for step, (X, Y) in enumerate(train_loader):
|
||||||
X = X.to(device)
|
X = X.to(args.device)
|
||||||
Y = Y.to(device)
|
Y = Y.to(args.device)
|
||||||
|
|
||||||
lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch)
|
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch)
|
||||||
for param_group in optimizer.param_groups:
|
for param_group in optimizer.param_groups:
|
||||||
param_group['lr'] = lr
|
param_group['lr'] = lr
|
||||||
|
|
||||||
with ctx:
|
with ctx:
|
||||||
out = model(X, Y)
|
out = model(X, Y)
|
||||||
loss = out.last_loss / accumulation_steps
|
loss = out.last_loss / args.accumulation_steps
|
||||||
|
|
||||||
scaler.scale(loss).backward()
|
scaler.scale(loss).backward()
|
||||||
|
|
||||||
if (step + 1) % accumulation_steps == 0:
|
if (step + 1) % args.accumulation_steps == 0:
|
||||||
scaler.unscale_(optimizer)
|
scaler.unscale_(optimizer)
|
||||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
|
||||||
|
|
||||||
scaler.step(optimizer)
|
scaler.step(optimizer)
|
||||||
scaler.update()
|
scaler.update()
|
||||||
|
|
||||||
optimizer.zero_grad(set_to_none=True)
|
optimizer.zero_grad(set_to_none=True)
|
||||||
|
|
||||||
if step % 100 == 0:
|
if step % args.log_interval == 0:
|
||||||
spend_time = time.time() - start_time
|
spend_time = time.time() - start_time
|
||||||
Logger(
|
Logger(
|
||||||
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
|
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
|
||||||
epoch,
|
epoch,
|
||||||
epochs,
|
args.epochs,
|
||||||
step,
|
step,
|
||||||
iter_per_epoch,
|
iter_per_epoch,
|
||||||
loss.item() * accumulation_steps,
|
loss.item() * args.accumulation_steps,
|
||||||
optimizer.param_groups[-1]['lr'],
|
optimizer.param_groups[-1]['lr'],
|
||||||
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
||||||
if wandb != None:
|
if wandb is not None:
|
||||||
wandb.log({"loss": loss.item() * accumulation_steps,
|
wandb.log({"loss": loss.item() * args.accumulation_steps,
|
||||||
"lr": optimizer.param_groups[-1]['lr'],
|
"lr": optimizer.param_groups[-1]['lr'],
|
||||||
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
||||||
|
|
||||||
if (step + 1) % 1000 == 0 and (not ddp or dist.get_rank() == 0):
|
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
|
||||||
model.eval()
|
model.eval()
|
||||||
# torch.save(model.state_dict(), '{}/iter_{}.pth'.format(save_dir, int(step + epoch * iter_per_epoch)))
|
|
||||||
moe_path = '_moe' if lm_config.use_moe else ''
|
moe_path = '_moe' if lm_config.use_moe else ''
|
||||||
ckp = f'{save_dir}/pretrain_{lm_config.dim}{moe_path}.pth'
|
ckp = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}.pth'
|
||||||
|
|
||||||
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
||||||
state_dict = model.module.state_dict()
|
state_dict = model.module.state_dict()
|
||||||
@ -97,17 +97,8 @@ def init_model():
|
|||||||
def count_parameters(model):
|
def count_parameters(model):
|
||||||
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
||||||
|
|
||||||
# model init
|
model = Transformer(lm_config).to(args.device)
|
||||||
model = Transformer(lm_config).to(device)
|
|
||||||
moe_path = '_moe' if lm_config.use_moe else ''
|
moe_path = '_moe' if lm_config.use_moe else ''
|
||||||
# ckp = f'{save_dir}/pretrain_{lm_config.dim}{moe_path}.pth'
|
|
||||||
#
|
|
||||||
# state_dict = torch.load(ckp, map_location=device)
|
|
||||||
# unwanted_prefix = '_orig_mod.'
|
|
||||||
# for k, v in list(state_dict.items()):
|
|
||||||
# if k.startswith(unwanted_prefix):
|
|
||||||
# state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
|
||||||
# model.load_state_dict(state_dict, strict=False)
|
|
||||||
|
|
||||||
Logger(f'LLM总参数量:{count_parameters(model) / 1e6:.3f} 百万')
|
Logger(f'LLM总参数量:{count_parameters(model) / 1e6:.3f} 百万')
|
||||||
return model
|
return model
|
||||||
@ -125,81 +116,78 @@ def init_distributed_mode():
|
|||||||
torch.cuda.set_device(DEVICE)
|
torch.cuda.set_device(DEVICE)
|
||||||
|
|
||||||
# torchrun --nproc_per_node 2 1-pretrain.py
|
# torchrun --nproc_per_node 2 1-pretrain.py
|
||||||
# I/O
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# -----------------------------------------------------------------------------
|
parser = argparse.ArgumentParser(description="MiniMind Pretraining")
|
||||||
|
parser.add_argument("--out_dir", type=str, default="out", help="Output directory")
|
||||||
|
parser.add_argument("--epochs", type=int, default=20, help="Number of epochs")
|
||||||
|
parser.add_argument("--batch_size", type=int, default=64, help="Batch size")
|
||||||
|
parser.add_argument("--learning_rate", type=float, default=2e-4, help="Learning rate")
|
||||||
|
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
|
||||||
|
parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type")
|
||||||
|
parser.add_argument("--use_wandb", action="store_true", help="Use Weights & Biases")
|
||||||
|
parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain", help="Weights & Biases project name")
|
||||||
|
parser.add_argument("--num_workers", type=int, default=8, help="Number of workers for data loading")
|
||||||
|
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_data.bin", help="Path to training data")
|
||||||
|
parser.add_argument("--ddp", action="store_true", help="Use DistributedDataParallel")
|
||||||
|
parser.add_argument("--accumulation_steps", type=int, default=8, help="Gradient accumulation steps")
|
||||||
|
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold")
|
||||||
|
parser.add_argument("--warmup_iters", type=int, default=0, help="Number of warmup iterations")
|
||||||
|
parser.add_argument("--log_interval", type=int, default=100, help="Logging interval")
|
||||||
|
parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval")
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
lm_config = LMConfig()
|
lm_config = LMConfig()
|
||||||
max_seq_len = lm_config.max_seq_len
|
max_seq_len = lm_config.max_seq_len
|
||||||
out_dir = 'out'
|
args.save_dir = os.path.join(args.out_dir)
|
||||||
epochs = 20
|
os.makedirs(args.save_dir, exist_ok=True)
|
||||||
batch_size = 64
|
os.makedirs(args.out_dir, exist_ok=True)
|
||||||
learning_rate = 2e-4
|
tokens_per_iter = args.batch_size * max_seq_len
|
||||||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
|
||||||
dtype = 'bfloat16'
|
|
||||||
save_dir = os.path.join(out_dir)
|
|
||||||
os.makedirs(save_dir, exist_ok=True)
|
|
||||||
os.makedirs(out_dir, exist_ok=True)
|
|
||||||
tokens_per_iter = batch_size * max_seq_len
|
|
||||||
torch.manual_seed(1337)
|
torch.manual_seed(1337)
|
||||||
device_type = device if "cuda" in device else "cpu"
|
device_type = "cuda" if "cuda" in args.device else "cpu"
|
||||||
|
|
||||||
use_wandb = True #是否使用wandb
|
args.wandb_run_name = f"MiniMind-Pretrain-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
|
||||||
wandb_project = "MiniMind-Pretrain"
|
|
||||||
wandb_run_name = f"MiniMind-Pretrain-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}"
|
|
||||||
|
|
||||||
|
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
|
||||||
ctx = (
|
|
||||||
nullcontext()
|
|
||||||
if device_type == "cpu"
|
|
||||||
else torch.cuda.amp.autocast()
|
|
||||||
)
|
|
||||||
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
|
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
|
||||||
ddp_local_rank, DEVICE = 0, "cuda:0"
|
ddp_local_rank, DEVICE = 0, "cuda:0"
|
||||||
if ddp:
|
if ddp:
|
||||||
init_distributed_mode()
|
init_distributed_mode()
|
||||||
device = torch.device(DEVICE)
|
args.device = torch.device(DEVICE)
|
||||||
|
|
||||||
if use_wandb and (not ddp or ddp_local_rank == 0):
|
if args.use_wandb and (not ddp or ddp_local_rank == 0):
|
||||||
import wandb
|
import wandb
|
||||||
wandb.init(project=wandb_project, name=wandb_run_name)
|
wandb.init(project=args.wandb_project, name=args.wandb_run_name)
|
||||||
else:
|
else:
|
||||||
wandb = None
|
wandb = None
|
||||||
# -----------------------------------------------------------------------------
|
|
||||||
|
|
||||||
# -----init dataloader------
|
data_path_list = [args.data_path]
|
||||||
data_path_list = ['./dataset/pretrain_data.bin']
|
|
||||||
train_ds = PretrainDataset(data_path_list, max_length=max_seq_len, memmap=True)
|
train_ds = PretrainDataset(data_path_list, max_length=max_seq_len, memmap=True)
|
||||||
train_sampler = DistributedSampler(train_ds) if ddp else None
|
train_sampler = DistributedSampler(train_ds) if ddp else None
|
||||||
num_workers = 8 # 可以根据系统的 CPU 核心数来调整
|
|
||||||
train_loader = DataLoader(
|
train_loader = DataLoader(
|
||||||
train_ds,
|
train_ds,
|
||||||
batch_size=batch_size,
|
batch_size=args.batch_size,
|
||||||
pin_memory=True,
|
pin_memory=True,
|
||||||
drop_last=False,
|
drop_last=False,
|
||||||
shuffle=False,
|
shuffle=False,
|
||||||
num_workers=num_workers,
|
num_workers=args.num_workers,
|
||||||
sampler=train_sampler
|
sampler=train_sampler
|
||||||
)
|
)
|
||||||
|
|
||||||
# init model
|
|
||||||
model = init_model()
|
model = init_model()
|
||||||
|
|
||||||
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == dtype))
|
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype == args.dtype))
|
||||||
# optimizer
|
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
|
||||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
|
||||||
# compile the model
|
|
||||||
if False and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:
|
if False and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:
|
||||||
Logger("compiling the model... (takes a ~minute)")
|
Logger("compiling the model... (takes a ~minute)")
|
||||||
unoptimized_model = model
|
unoptimized_model = model
|
||||||
model = torch.compile(model)
|
model = torch.compile(model)
|
||||||
|
|
||||||
if ddp:
|
if ddp:
|
||||||
# Ignore the freqs_cis buffer so that DDP does not broadcast it at
|
|
||||||
# construction time since NCCL does not support ComplexFloat
|
|
||||||
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
|
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
|
||||||
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
|
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
|
||||||
|
|
||||||
# training loop
|
|
||||||
iter_per_epoch = len(train_loader)
|
iter_per_epoch = len(train_loader)
|
||||||
for epoch in range(epochs):
|
for epoch in range(args.epochs):
|
||||||
train_epoch(epoch, wandb)
|
train_epoch(epoch, wandb)
|
||||||
|
147
3-full_sft.py
147
3-full_sft.py
@ -1,5 +1,6 @@
|
|||||||
import os
|
import os
|
||||||
import platform
|
import platform
|
||||||
|
import argparse
|
||||||
import time
|
import time
|
||||||
import math
|
import math
|
||||||
import warnings
|
import warnings
|
||||||
@ -12,7 +13,6 @@ from contextlib import nullcontext
|
|||||||
|
|
||||||
from torch import optim
|
from torch import optim
|
||||||
from torch.nn.parallel import DistributedDataParallel
|
from torch.nn.parallel import DistributedDataParallel
|
||||||
from torch.optim.lr_scheduler import CosineAnnealingLR
|
|
||||||
from torch.utils.data import DataLoader, DistributedSampler
|
from torch.utils.data import DataLoader, DistributedSampler
|
||||||
from transformers import AutoTokenizer, AutoModel
|
from transformers import AutoTokenizer, AutoModel
|
||||||
from model.model import Transformer
|
from model.model import Transformer
|
||||||
@ -28,28 +28,27 @@ def Logger(content):
|
|||||||
|
|
||||||
|
|
||||||
def get_lr(it, all):
|
def get_lr(it, all):
|
||||||
warmup_iters = 0
|
warmup_iters = args.warmup_iters
|
||||||
lr_decay_iters = all
|
lr_decay_iters = all
|
||||||
min_lr = learning_rate / epochs
|
min_lr = args.learning_rate / 10
|
||||||
|
|
||||||
if it < warmup_iters:
|
if it < warmup_iters:
|
||||||
return learning_rate * it / warmup_iters
|
return args.learning_rate * it / warmup_iters
|
||||||
if it > lr_decay_iters:
|
if it > lr_decay_iters:
|
||||||
return min_lr
|
return min_lr
|
||||||
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
|
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
|
||||||
assert 0 <= decay_ratio <= 1
|
assert 0 <= decay_ratio <= 1
|
||||||
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
||||||
return min_lr + coeff * (learning_rate - min_lr)
|
return min_lr + coeff * (args.learning_rate - min_lr)
|
||||||
|
|
||||||
|
|
||||||
# ------------------------------------------------------------------------------
|
|
||||||
def train_epoch(epoch, wandb):
|
def train_epoch(epoch, wandb):
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
for step, (X, Y, loss_mask) in enumerate(train_loader):
|
for step, (X, Y, loss_mask) in enumerate(train_loader):
|
||||||
X = X.to(device)
|
X = X.to(args.device)
|
||||||
Y = Y.to(device)
|
Y = Y.to(args.device)
|
||||||
loss_mask = loss_mask.to(device)
|
loss_mask = loss_mask.to(args.device)
|
||||||
lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch)
|
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch)
|
||||||
for param_group in optimizer.param_groups:
|
for param_group in optimizer.param_groups:
|
||||||
param_group['lr'] = lr
|
param_group['lr'] = lr
|
||||||
|
|
||||||
@ -59,41 +58,38 @@ def train_epoch(epoch, wandb):
|
|||||||
loss_mask = loss_mask.view(-1)
|
loss_mask = loss_mask.view(-1)
|
||||||
loss = torch.sum(loss * loss_mask) / loss_mask.sum()
|
loss = torch.sum(loss * loss_mask) / loss_mask.sum()
|
||||||
|
|
||||||
# Backward pass
|
|
||||||
scaler.scale(loss).backward()
|
scaler.scale(loss).backward()
|
||||||
|
|
||||||
# Unscale gradients and clip them
|
if (step + 1) % args.accumulation_steps == 0:
|
||||||
scaler.unscale_(optimizer)
|
scaler.unscale_(optimizer)
|
||||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
|
||||||
|
|
||||||
# Update parameters
|
|
||||||
scaler.step(optimizer)
|
scaler.step(optimizer)
|
||||||
scaler.update()
|
scaler.update()
|
||||||
|
|
||||||
# Zero the gradients
|
|
||||||
optimizer.zero_grad(set_to_none=True)
|
optimizer.zero_grad(set_to_none=True)
|
||||||
|
|
||||||
# 打印日志
|
if step % args.log_interval == 0:
|
||||||
if step % 100 == 0:
|
|
||||||
spend_time = time.time() - start_time
|
spend_time = time.time() - start_time
|
||||||
Logger(
|
Logger(
|
||||||
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.8f} epoch_Time:{}min:'.format(
|
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
|
||||||
epoch,
|
epoch,
|
||||||
epochs,
|
args.epochs,
|
||||||
step,
|
step,
|
||||||
iter_per_epoch,
|
iter_per_epoch,
|
||||||
loss,
|
loss.item(),
|
||||||
optimizer.param_groups[-1]['lr'],
|
optimizer.param_groups[-1]['lr'],
|
||||||
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
||||||
if use_wandb != None:
|
if wandb is not None:
|
||||||
wandb.log({"loss": loss, "lr": optimizer.param_groups[-1]['lr'],
|
wandb.log({"loss": loss.item(),
|
||||||
|
"lr": optimizer.param_groups[-1]['lr'],
|
||||||
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
||||||
|
|
||||||
if (step + 1) % 1000 == 0 and (not ddp or dist.get_rank() == 0):
|
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
|
||||||
model.eval()
|
model.eval()
|
||||||
# torch.save(model.state_dict(), '{}/sft_iter_{}.pth'.format(save_dir, int(step + epoch * iter_per_epoch)))
|
|
||||||
moe_path = '_moe' if lm_config.use_moe else ''
|
moe_path = '_moe' if lm_config.use_moe else ''
|
||||||
ckp = f'{save_dir}/full_sft_{lm_config.dim}{moe_path}.pth'
|
ckp = f'{args.save_dir}/full_sft_{lm_config.dim}{moe_path}.pth'
|
||||||
|
|
||||||
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
||||||
state_dict = model.module.state_dict()
|
state_dict = model.module.state_dict()
|
||||||
else:
|
else:
|
||||||
@ -103,7 +99,7 @@ def train_epoch(epoch, wandb):
|
|||||||
model.train()
|
model.train()
|
||||||
|
|
||||||
|
|
||||||
def init_model(lm_config):
|
def init_model():
|
||||||
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
|
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
|
||||||
model_from = 1 # 1从权重,2用transformers
|
model_from = 1 # 1从权重,2用transformers
|
||||||
|
|
||||||
@ -114,7 +110,7 @@ def init_model(lm_config):
|
|||||||
model = Transformer(lm_config)
|
model = Transformer(lm_config)
|
||||||
moe_path = '_moe' if lm_config.use_moe else ''
|
moe_path = '_moe' if lm_config.use_moe else ''
|
||||||
ckp = f'./out/pretrain_{lm_config.dim}{moe_path}.pth'
|
ckp = f'./out/pretrain_{lm_config.dim}{moe_path}.pth'
|
||||||
state_dict = torch.load(ckp, map_location=device)
|
state_dict = torch.load(ckp, map_location=args.device)
|
||||||
unwanted_prefix = '_orig_mod.'
|
unwanted_prefix = '_orig_mod.'
|
||||||
for k, v in list(state_dict.items()):
|
for k, v in list(state_dict.items()):
|
||||||
if k.startswith(unwanted_prefix):
|
if k.startswith(unwanted_prefix):
|
||||||
@ -124,7 +120,7 @@ def init_model(lm_config):
|
|||||||
model = AutoModel.from_pretrained('./minimind', trust_remote_code=True)
|
model = AutoModel.from_pretrained('./minimind', trust_remote_code=True)
|
||||||
|
|
||||||
Logger(f'LLM总参数量:{count_parameters(model) / 1e6:.3f} 百万')
|
Logger(f'LLM总参数量:{count_parameters(model) / 1e6:.3f} 百万')
|
||||||
model = model.to(device)
|
model = model.to(args.device)
|
||||||
|
|
||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
|
|
||||||
@ -141,83 +137,78 @@ def init_distributed_mode():
|
|||||||
torch.cuda.set_device(DEVICE)
|
torch.cuda.set_device(DEVICE)
|
||||||
|
|
||||||
|
|
||||||
# I/O
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# -----------------------------------------------------------------------------
|
parser = argparse.ArgumentParser(description="MiniMind Full SFT")
|
||||||
|
parser.add_argument("--out_dir", type=str, default="out", help="Output directory")
|
||||||
|
parser.add_argument("--epochs", type=int, default=19, help="Number of epochs")
|
||||||
|
parser.add_argument("--batch_size", type=int, default=40, help="Batch size")
|
||||||
|
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate")
|
||||||
|
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
|
||||||
|
parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type")
|
||||||
|
parser.add_argument("--use_wandb", action="store_true", help="Use Weights & Biases")
|
||||||
|
parser.add_argument("--wandb_project", type=str, default="MiniMind-Full-SFT", help="Weights & Biases project name")
|
||||||
|
parser.add_argument("--num_workers", type=int, default=8, help="Number of workers for data loading")
|
||||||
|
parser.add_argument("--ddp", action="store_true", help="Use DistributedDataParallel")
|
||||||
|
parser.add_argument("--accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
|
||||||
|
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold")
|
||||||
|
parser.add_argument("--warmup_iters", type=int, default=0, help="Number of warmup iterations")
|
||||||
|
parser.add_argument("--log_interval", type=int, default=100, help="Logging interval")
|
||||||
|
parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval")
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
lm_config = LMConfig()
|
lm_config = LMConfig()
|
||||||
max_seq_len = lm_config.max_seq_len
|
max_seq_len = lm_config.max_seq_len
|
||||||
out_dir = 'out'
|
args.save_dir = os.path.join(args.out_dir)
|
||||||
epochs = 19
|
os.makedirs(args.save_dir, exist_ok=True)
|
||||||
gradient_accumulation_steps = 1
|
os.makedirs(args.out_dir, exist_ok=True)
|
||||||
batch_size = 40
|
tokens_per_iter = args.batch_size * max_seq_len
|
||||||
learning_rate = 1e-4
|
|
||||||
device = 'cuda:0' if torch.cuda.is_available() else 'cpu'
|
|
||||||
dtype = 'bfloat16'
|
|
||||||
# dtype = 'float16'
|
|
||||||
save_dir = os.path.join(out_dir)
|
|
||||||
os.makedirs(save_dir, exist_ok=True)
|
|
||||||
tokens_per_iter = gradient_accumulation_steps * batch_size * max_seq_len
|
|
||||||
os.makedirs(out_dir, exist_ok=True)
|
|
||||||
torch.manual_seed(1337)
|
torch.manual_seed(1337)
|
||||||
device_type = device if "cuda" in device else "cpu"
|
device_type = "cuda" if "cuda" in args.device else "cpu"
|
||||||
|
|
||||||
use_wandb = True #是否使用wandb
|
args.wandb_run_name = f"MiniMind-Full-SFT-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
|
||||||
wandb_project = "MiniMind-Full-SFT"
|
|
||||||
wandb_run_name = f"MiniMind-Full-SFT-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}"
|
|
||||||
if use_wandb:
|
|
||||||
import wandb
|
|
||||||
wandb.init(project=wandb_project, name=wandb_run_name)
|
|
||||||
else:
|
|
||||||
wandb = None
|
|
||||||
|
|
||||||
ctx = (
|
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
|
||||||
nullcontext()
|
|
||||||
if device_type == "cpu"
|
|
||||||
else torch.cuda.amp.autocast()
|
|
||||||
)
|
|
||||||
|
|
||||||
### ddp config
|
|
||||||
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
|
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
|
||||||
ddp_local_rank, DEVICE = 0, "cuda:0"
|
ddp_local_rank, DEVICE = 0, "cuda:0"
|
||||||
if ddp:
|
if ddp:
|
||||||
init_distributed_mode()
|
init_distributed_mode()
|
||||||
device = torch.device(DEVICE)
|
args.device = torch.device(DEVICE)
|
||||||
# -----------------------------------------------------------------------------
|
|
||||||
|
if args.use_wandb and (not ddp or ddp_local_rank == 0):
|
||||||
|
import wandb
|
||||||
|
wandb.init(project=args.wandb_project, name=args.wandb_run_name)
|
||||||
|
else:
|
||||||
|
wandb = None
|
||||||
|
|
||||||
|
model, tokenizer = init_model()
|
||||||
|
|
||||||
model, tokenizer = init_model(lm_config)
|
|
||||||
# -----init dataloader------
|
|
||||||
df = pd.read_csv('./dataset/sft_data_single.csv')
|
df = pd.read_csv('./dataset/sft_data_single.csv')
|
||||||
df = df.sample(frac=1.0)
|
df = df.sample(frac=1.0)
|
||||||
train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len)
|
train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len)
|
||||||
train_sampler = DistributedSampler(train_ds) if ddp else None
|
train_sampler = DistributedSampler(train_ds) if ddp else None
|
||||||
train_loader = DataLoader(
|
train_loader = DataLoader(
|
||||||
train_ds,
|
train_ds,
|
||||||
batch_size=batch_size,
|
batch_size=args.batch_size,
|
||||||
pin_memory=False,
|
pin_memory=True,
|
||||||
drop_last=False,
|
drop_last=False,
|
||||||
shuffle=False,
|
shuffle=False,
|
||||||
num_workers=8,
|
num_workers=args.num_workers,
|
||||||
sampler=train_sampler
|
sampler=train_sampler
|
||||||
)
|
)
|
||||||
|
|
||||||
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == dtype))
|
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype == args.dtype))
|
||||||
# optimizer
|
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
|
||||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
|
||||||
|
|
||||||
iter_per_epoch = len(train_loader)
|
if False and not lm_config.use_moe and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:
|
||||||
# compile the model
|
|
||||||
if False and not lm_config.use_moe and platform.system() != 'Windows' and float(
|
|
||||||
torch.__version__.split('.')[0]) >= 2:
|
|
||||||
Logger("compiling the model... (takes a ~minute)")
|
Logger("compiling the model... (takes a ~minute)")
|
||||||
unoptimized_model = model
|
unoptimized_model = model
|
||||||
model = torch.compile(model) # requires PyTorch 2.0
|
model = torch.compile(model)
|
||||||
|
|
||||||
if ddp:
|
if ddp:
|
||||||
# Ignore the pos_cis buffer so that DDP does not broadcast it at
|
|
||||||
# construction time since NCCL does not support ComplexFloat
|
|
||||||
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
|
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
|
||||||
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
|
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
|
||||||
|
|
||||||
# training loop
|
iter_per_epoch = len(train_loader)
|
||||||
for epoch in range(epochs,wandb):
|
for epoch in range(args.epochs):
|
||||||
train_epoch(epoch)
|
train_epoch(epoch, wandb)
|
||||||
|
132
4-lora_sft.py
132
4-lora_sft.py
@ -1,5 +1,6 @@
|
|||||||
import os
|
import os
|
||||||
import platform
|
import platform
|
||||||
|
import argparse
|
||||||
import time
|
import time
|
||||||
import math
|
import math
|
||||||
import warnings
|
import warnings
|
||||||
@ -16,32 +17,36 @@ from torch.utils.data import DataLoader
|
|||||||
from model.LMConfig import LMConfig
|
from model.LMConfig import LMConfig
|
||||||
from model.dataset import SFTDataset
|
from model.dataset import SFTDataset
|
||||||
|
|
||||||
warnings.filterwarnings('ignore', category=UserWarning)
|
warnings.filterwarnings('ignore')
|
||||||
|
|
||||||
|
|
||||||
def get_lr(it):
|
def Logger(content):
|
||||||
warmup_iters = 1000
|
print(content)
|
||||||
lr_decay_iters = 80000
|
|
||||||
min_lr = 1e-5
|
|
||||||
|
def get_lr(it, all):
|
||||||
|
warmup_iters = args.warmup_iters
|
||||||
|
lr_decay_iters = all
|
||||||
|
min_lr = args.learning_rate / 10
|
||||||
|
|
||||||
if it < warmup_iters:
|
if it < warmup_iters:
|
||||||
return learning_rate * it / warmup_iters
|
return args.learning_rate * it / warmup_iters
|
||||||
if it > lr_decay_iters:
|
if it > lr_decay_iters:
|
||||||
return min_lr
|
return min_lr
|
||||||
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
|
decay_ratio = (it - warmup_iters) / (lr_decay_iters - warmup_iters)
|
||||||
assert 0 <= decay_ratio <= 1
|
assert 0 <= decay_ratio <= 1
|
||||||
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
||||||
return min_lr + coeff * (learning_rate - min_lr)
|
return min_lr + coeff * (args.learning_rate - min_lr)
|
||||||
|
|
||||||
|
|
||||||
# ------------------------------------------------------------------------------
|
|
||||||
def train_epoch(epoch, wandb):
|
def train_epoch(epoch, wandb):
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
for step, (X, Y, loss_mask) in enumerate(train_loader):
|
for step, (X, Y, loss_mask) in enumerate(train_loader):
|
||||||
X = X.to(device)
|
X = X.to(args.device)
|
||||||
Y = Y.to(device)
|
Y = Y.to(args.device)
|
||||||
loss_mask = loss_mask.to(device)
|
loss_mask = loss_mask.to(args.device)
|
||||||
lr = get_lr(epoch * iter_per_epoch + step)
|
|
||||||
|
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch)
|
||||||
for param_group in optimizer.param_groups:
|
for param_group in optimizer.param_groups:
|
||||||
param_group['lr'] = lr
|
param_group['lr'] = lr
|
||||||
|
|
||||||
@ -50,32 +55,38 @@ def train_epoch(epoch, wandb):
|
|||||||
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), Y.view(-1), ignore_index=0, reduction='none')
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), Y.view(-1), ignore_index=0, reduction='none')
|
||||||
loss_mask = loss_mask.view(-1)
|
loss_mask = loss_mask.view(-1)
|
||||||
loss = torch.sum(loss * loss_mask) / loss_mask.sum()
|
loss = torch.sum(loss * loss_mask) / loss_mask.sum()
|
||||||
|
loss = loss / args.accumulation_steps
|
||||||
|
|
||||||
scaler.scale(loss).backward()
|
scaler.scale(loss).backward()
|
||||||
|
|
||||||
|
if (step + 1) % args.accumulation_steps == 0:
|
||||||
scaler.unscale_(optimizer)
|
scaler.unscale_(optimizer)
|
||||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
|
||||||
|
|
||||||
scaler.step(optimizer)
|
scaler.step(optimizer)
|
||||||
scaler.update()
|
scaler.update()
|
||||||
|
|
||||||
optimizer.zero_grad(set_to_none=True)
|
optimizer.zero_grad(set_to_none=True)
|
||||||
|
|
||||||
if step % 100 == 0:
|
if step % args.log_interval == 0:
|
||||||
spend_time = time.time() - start_time
|
spend_time = time.time() - start_time
|
||||||
print(
|
Logger(
|
||||||
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
|
'Epoch:[{}/{}]({}/{}) loss:{:.3f} lr:{:.7f} epoch_Time:{}min:'.format(
|
||||||
epoch,
|
epoch,
|
||||||
epochs,
|
args.epochs,
|
||||||
step,
|
step,
|
||||||
iter_per_epoch,
|
iter_per_epoch,
|
||||||
loss.item(),
|
loss.item() * args.accumulation_steps,
|
||||||
optimizer.param_groups[-1]['lr'],
|
optimizer.param_groups[-1]['lr'],
|
||||||
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
||||||
if use_wandb != None:
|
if wandb is not None:
|
||||||
wandb.log({"loss": loss.item(), "lr": optimizer.param_groups[-1]['lr'],
|
wandb.log({"loss": loss.item() * args.accumulation_steps,
|
||||||
|
"lr": optimizer.param_groups[-1]['lr'],
|
||||||
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
||||||
|
|
||||||
|
if (step + 1) % args.save_interval == 0:
|
||||||
|
model.save_pretrained(args.save_dir)
|
||||||
|
|
||||||
|
|
||||||
def find_all_linear_names(model):
|
def find_all_linear_names(model):
|
||||||
cls = torch.nn.Linear
|
cls = torch.nn.Linear
|
||||||
@ -94,7 +105,7 @@ def init_model():
|
|||||||
model_name_or_path = "./minimind"
|
model_name_or_path = "./minimind"
|
||||||
tokenizer_name_or_path = "./minimind"
|
tokenizer_name_or_path = "./minimind"
|
||||||
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, trust_remote_code=True, use_fast=False)
|
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, trust_remote_code=True, use_fast=False)
|
||||||
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True).to(device)
|
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True).to(args.device)
|
||||||
|
|
||||||
target_modules = find_all_linear_names(model)
|
target_modules = find_all_linear_names(model)
|
||||||
peft_config = LoraConfig(
|
peft_config = LoraConfig(
|
||||||
@ -107,73 +118,70 @@ def init_model():
|
|||||||
)
|
)
|
||||||
model = get_peft_model(model, peft_config)
|
model = get_peft_model(model, peft_config)
|
||||||
model.print_trainable_parameters()
|
model.print_trainable_parameters()
|
||||||
model = model.to(device)
|
model = model.to(args.device)
|
||||||
return model, tokenizer
|
return model, tokenizer
|
||||||
|
|
||||||
|
|
||||||
# I/O
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
# -----------------------------------------------------------------------------
|
parser = argparse.ArgumentParser(description="MiniMind LoRA Fine-tuning")
|
||||||
|
parser.add_argument("--out_dir", type=str, default="out", help="Output directory")
|
||||||
|
parser.add_argument("--epochs", type=int, default=20, help="Number of epochs")
|
||||||
|
parser.add_argument("--batch_size", type=int, default=16, help="Batch size")
|
||||||
|
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate")
|
||||||
|
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu", help="Device to use")
|
||||||
|
parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type")
|
||||||
|
parser.add_argument("--use_wandb", action="store_true", help="Use Weights & Biases")
|
||||||
|
parser.add_argument("--wandb_project", type=str, default="MiniMind-LoRA", help="Weights & Biases project name")
|
||||||
|
parser.add_argument("--num_workers", type=int, default=0, help="Number of workers for data loading")
|
||||||
|
parser.add_argument("--accumulation_steps", type=int, default=1, help="Gradient accumulation steps")
|
||||||
|
parser.add_argument("--grad_clip", type=float, default=1.0, help="Gradient clipping threshold")
|
||||||
|
parser.add_argument("--warmup_iters", type=int, default=1000, help="Number of warmup iterations")
|
||||||
|
parser.add_argument("--log_interval", type=int, default=100, help="Logging interval")
|
||||||
|
parser.add_argument("--save_interval", type=int, default=1000, help="Model saving interval")
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
lm_config = LMConfig()
|
lm_config = LMConfig()
|
||||||
max_seq_len = lm_config.max_seq_len
|
max_seq_len = lm_config.max_seq_len
|
||||||
out_dir = 'out'
|
args.save_dir = os.path.join(args.out_dir)
|
||||||
epochs = 20
|
os.makedirs(args.save_dir, exist_ok=True)
|
||||||
gradient_accumulation_steps = 1
|
os.makedirs(args.out_dir, exist_ok=True)
|
||||||
batch_size = 16
|
tokens_per_iter = args.batch_size * max_seq_len
|
||||||
learning_rate = 1e-4
|
|
||||||
weight_decay = 1e-1
|
|
||||||
device = 'cuda:0'
|
|
||||||
dtype = 'bfloat16'
|
|
||||||
save_dir = os.path.join(out_dir)
|
|
||||||
os.makedirs(save_dir, exist_ok=True)
|
|
||||||
tokens_per_iter = gradient_accumulation_steps * batch_size * max_seq_len
|
|
||||||
os.makedirs(out_dir, exist_ok=True)
|
|
||||||
torch.manual_seed(1337)
|
torch.manual_seed(1337)
|
||||||
device_type = device if "cuda" in device else "cpu"
|
device_type = "cuda" if "cuda" in args.device else "cpu"
|
||||||
|
|
||||||
use_wandb = True #是否使用wandb
|
args.wandb_run_name = f"MiniMind-LoRA-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
|
||||||
wandb_project = "MiniMind-LoRA"
|
|
||||||
wandb_run_name = f"MiniMind-LoRA-Epoch-{epochs}-BatchSize-{batch_size}-LearningRate-{learning_rate}"
|
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
|
||||||
if use_wandb:
|
|
||||||
|
if args.use_wandb:
|
||||||
import wandb
|
import wandb
|
||||||
wandb.init(project=wandb_project, name=wandb_run_name)
|
wandb.init(project=args.wandb_project, name=args.wandb_run_name)
|
||||||
else:
|
else:
|
||||||
wandb = None
|
wandb = None
|
||||||
|
|
||||||
ctx = (
|
|
||||||
nullcontext()
|
|
||||||
if device_type == "cpu"
|
|
||||||
else torch.cuda.amp.autocast()
|
|
||||||
)
|
|
||||||
# -----------------------------------------------------------------------------
|
|
||||||
|
|
||||||
model, tokenizer = init_model()
|
model, tokenizer = init_model()
|
||||||
|
|
||||||
# -----init dataloader------
|
|
||||||
df = pd.read_csv('./dataset/sft_data.csv')
|
df = pd.read_csv('./dataset/sft_data.csv')
|
||||||
df = df.sample(frac=1.0)
|
df = df.sample(frac=1.0)
|
||||||
train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len)
|
train_ds = SFTDataset(df, tokenizer, max_length=max_seq_len)
|
||||||
train_loader = DataLoader(
|
train_loader = DataLoader(
|
||||||
train_ds,
|
train_ds,
|
||||||
batch_size=batch_size,
|
batch_size=args.batch_size,
|
||||||
pin_memory=False,
|
pin_memory=True,
|
||||||
drop_last=False,
|
drop_last=False,
|
||||||
shuffle=False,
|
shuffle=False,
|
||||||
num_workers=0,
|
num_workers=args.num_workers,
|
||||||
)
|
)
|
||||||
|
|
||||||
scaler = torch.cuda.amp.GradScaler(enabled=(dtype == 'float16'))
|
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype == 'float16'))
|
||||||
# optimizer
|
optimizer = optim.Adam(model.parameters(), lr=args.learning_rate)
|
||||||
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
|
|
||||||
iter_per_epoch = len(train_loader)
|
|
||||||
# compile the model
|
|
||||||
if False and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:
|
if False and platform.system() != 'Windows' and float(torch.__version__.split('.')[0]) >= 2:
|
||||||
print("compiling the model... (takes a ~minute)")
|
Logger("compiling the model... (takes a ~minute)")
|
||||||
unoptimized_model = model
|
unoptimized_model = model
|
||||||
model = torch.compile(model)
|
model = torch.compile(model)
|
||||||
|
|
||||||
raw_model = model
|
iter_per_epoch = len(train_loader)
|
||||||
# training loop
|
for epoch in range(args.epochs):
|
||||||
for epoch in range(epochs):
|
|
||||||
train_epoch(epoch, wandb)
|
train_epoch(epoch, wandb)
|
||||||
model.save_pretrained('minimind')
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user