正常尺寸
This commit is contained in:
parent
cb286d26d1
commit
5351ae8a6a
309
model/model.py
309
model/model.py
@ -11,14 +11,8 @@ import torch.nn.functional as F
|
|||||||
from torch import nn
|
from torch import nn
|
||||||
from transformers import PreTrainedModel
|
from transformers import PreTrainedModel
|
||||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||||
from torch import nn, einsum
|
|
||||||
from einops import rearrange, repeat
|
|
||||||
|
|
||||||
def exists(val):
|
|
||||||
return val is not None
|
|
||||||
|
|
||||||
|
|
||||||
# RMSNorm 类定义了一个用于归一化输入张量的模块。
|
|
||||||
class RMSNorm(torch.nn.Module):
|
class RMSNorm(torch.nn.Module):
|
||||||
def __init__(self, dim: int, eps: float = 1e-6):
|
def __init__(self, dim: int, eps: float = 1e-6):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -31,7 +25,7 @@ class RMSNorm(torch.nn.Module):
|
|||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.weight * self._norm(x.float()).type_as(x)
|
return self.weight * self._norm(x.float()).type_as(x)
|
||||||
|
|
||||||
# precompute_pos_cis 函数用于预计算位置编码。
|
|
||||||
def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
||||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
||||||
t = torch.arange(end, device=freqs.device) # type: ignore
|
t = torch.arange(end, device=freqs.device) # type: ignore
|
||||||
@ -39,7 +33,7 @@ def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
|||||||
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
||||||
return pos_cis
|
return pos_cis
|
||||||
|
|
||||||
# apply_rotary_emb 函数用于应用旋转位置编码。
|
|
||||||
def apply_rotary_emb(xq, xk, pos_cis):
|
def apply_rotary_emb(xq, xk, pos_cis):
|
||||||
def unite_shape(pos_cis, x):
|
def unite_shape(pos_cis, x):
|
||||||
ndim = x.ndim
|
ndim = x.ndim
|
||||||
@ -55,7 +49,7 @@ def apply_rotary_emb(xq, xk, pos_cis):
|
|||||||
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
|
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
|
||||||
return xq_out.type_as(xq), xk_out.type_as(xk)
|
return xq_out.type_as(xq), xk_out.type_as(xk)
|
||||||
|
|
||||||
# repeat_kv 函数用于重复键值对。
|
|
||||||
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||||
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
||||||
bs, slen, n_kv_heads, head_dim = x.shape
|
bs, slen, n_kv_heads, head_dim = x.shape
|
||||||
@ -94,15 +88,13 @@ class Attention(nn.Module):
|
|||||||
x: torch.Tensor,
|
x: torch.Tensor,
|
||||||
pos_cis: torch.Tensor,
|
pos_cis: torch.Tensor,
|
||||||
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||||
use_cache=False,
|
use_cache=False):
|
||||||
db_value=None):
|
bsz, seq_len, _ = x.shape
|
||||||
bsz, seq_len, _ = x.shape #bsz: 批量大小, seq_len: 序列长度, _: 隐藏维度
|
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
||||||
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) #将输入张量x分别通过线性层wq, wk, wv进行变换,得到查询、键和值。
|
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
|
||||||
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim) #将变换后的张量xq重塑为形状为(bsz, seq_len, n_local_heads, head_dim)的形状。
|
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
||||||
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xk重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
|
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
||||||
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xv重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
|
|
||||||
|
|
||||||
# 应用旋转位置编码
|
|
||||||
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
|
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
|
||||||
# kv_cache实现
|
# kv_cache实现
|
||||||
if past_key_value is not None:
|
if past_key_value is not None:
|
||||||
@ -110,40 +102,11 @@ class Attention(nn.Module):
|
|||||||
xv = torch.cat([past_key_value[1], xv], dim=1)
|
xv = torch.cat([past_key_value[1], xv], dim=1)
|
||||||
past_kv = (xk, xv) if use_cache else None
|
past_kv = (xk, xv) if use_cache else None
|
||||||
|
|
||||||
# 重复键值对
|
|
||||||
xq, xk, xv = (
|
xq, xk, xv = (
|
||||||
xq.transpose(1, 2),
|
xq.transpose(1, 2),
|
||||||
repeat_kv(xk, self.n_rep).transpose(1, 2),
|
repeat_kv(xk, self.n_rep).transpose(1, 2),
|
||||||
repeat_kv(xv, self.n_rep).transpose(1, 2)
|
repeat_kv(xv, self.n_rep).transpose(1, 2)
|
||||||
)
|
)
|
||||||
|
|
||||||
# 如果提供了db_value,根据头的数量调整它的形状并与xv合并
|
|
||||||
if db_value is not None:
|
|
||||||
# 确保db_value的形状与xv兼容,假设db_value形状为[B, N, H, D]
|
|
||||||
if db_value.ndim == 4: # [B, N, H, D]
|
|
||||||
db_value = db_value.transpose(1, 2) # -> [B, H, N, D]
|
|
||||||
|
|
||||||
# 检查是否需要调整D维度
|
|
||||||
if db_value.shape[-1] != xv.shape[-1]:
|
|
||||||
# 如果db_value的维度与xv不同,可以添加一个投影层
|
|
||||||
# 或者在这里使用简单的调整方法
|
|
||||||
# 这里我们简单地通过均值池化或重复来调整维度
|
|
||||||
if db_value.shape[-1] > xv.shape[-1]:
|
|
||||||
# 降维
|
|
||||||
factor = db_value.shape[-1] // xv.shape[-1]
|
|
||||||
db_value = db_value.view(bsz, self.n_local_heads, seq_len, factor, xv.shape[-1])
|
|
||||||
db_value = db_value.mean(dim=3)
|
|
||||||
else:
|
|
||||||
# 升维
|
|
||||||
factor = xv.shape[-1] // db_value.shape[-1]
|
|
||||||
db_value = db_value.unsqueeze(-1).repeat(1, 1, 1, 1, factor)
|
|
||||||
db_value = db_value.view(bsz, self.n_local_heads, seq_len, xv.shape[-1])
|
|
||||||
|
|
||||||
# 将db_value与xv相加或融合
|
|
||||||
# 这里我们简单地将它们相加,但你也可以使用其他融合方法
|
|
||||||
xv = xv + db_value
|
|
||||||
|
|
||||||
# 使用Flash Attention
|
|
||||||
if self.flash and seq_len != 1:
|
if self.flash and seq_len != 1:
|
||||||
dropout_p = self.dropout if self.training else 0.0
|
dropout_p = self.dropout if self.training else 0.0
|
||||||
output = F.scaled_dot_product_attention(
|
output = F.scaled_dot_product_attention(
|
||||||
@ -164,53 +127,6 @@ class Attention(nn.Module):
|
|||||||
return output, past_kv
|
return output, past_kv
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class CrossAttention(nn.Module):
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
config
|
|
||||||
):
|
|
||||||
super().__init__()
|
|
||||||
self.config = config
|
|
||||||
self.num_heads = 8
|
|
||||||
self.head_dim = self.config.dim // self.num_heads
|
|
||||||
self.to_q = nn.Linear(self.config.dim, self.config.dim, bias=False)
|
|
||||||
self.to_k = nn.Linear(self.config.dim, self.config.dim, bias=False)
|
|
||||||
self.to_v = nn.Linear(self.config.dim, self.config.dim, bias=False)
|
|
||||||
|
|
||||||
self.to_out = nn.Linear(self.config.dim, self.config.dim, bias=False)
|
|
||||||
|
|
||||||
def forward(self, x, db, context_mask=None, pos_emb=None):
|
|
||||||
batch_size = x.size(0)
|
|
||||||
|
|
||||||
# 分离多头
|
|
||||||
q = self.to_q(x).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
|
||||||
k = self.to_k(db).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
|
||||||
v = self.to_v(db).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
|
||||||
|
|
||||||
if pos_emb is not None:
|
|
||||||
pos_emb = pos_emb.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
|
||||||
q = q + pos_emb
|
|
||||||
k = k + pos_emb
|
|
||||||
v = v + pos_emb
|
|
||||||
|
|
||||||
attn_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
|
||||||
|
|
||||||
if context_mask is not None:
|
|
||||||
expanded_mask = context_mask.unsqueeze(1).expand(-1, self.num_heads, -1, -1)
|
|
||||||
attn_scores = attn_scores.masked_fill(expanded_mask == 0, -1e10)
|
|
||||||
|
|
||||||
attn_weights = F.softmax(attn_scores, dim=-1)
|
|
||||||
|
|
||||||
context = torch.matmul(attn_weights, v)
|
|
||||||
|
|
||||||
context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.config.dim)
|
|
||||||
|
|
||||||
context = self.to_out(context)
|
|
||||||
|
|
||||||
return context
|
|
||||||
|
|
||||||
class FeedForward(nn.Module):
|
class FeedForward(nn.Module):
|
||||||
def __init__(self, config: LMConfig):
|
def __init__(self, config: LMConfig):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -349,162 +265,23 @@ class MiniMindBlock(nn.Module):
|
|||||||
self.dim = config.dim
|
self.dim = config.dim
|
||||||
self.head_dim = config.dim // config.n_heads
|
self.head_dim = config.dim // config.n_heads
|
||||||
self.attention = Attention(config)
|
self.attention = Attention(config)
|
||||||
self.cross_att = CrossAttention(config)
|
|
||||||
|
|
||||||
self.layer_id = layer_id
|
self.layer_id = layer_id
|
||||||
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
||||||
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
||||||
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
|
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
|
||||||
|
|
||||||
# 假设num_experts是已定义的总专家数量的平方根
|
def forward(self, x, pos_cis, past_key_value=None, use_cache=False):
|
||||||
|
|
||||||
|
|
||||||
# 查询生成的参数
|
|
||||||
|
|
||||||
|
|
||||||
# 创建查询生成模块
|
|
||||||
# if weight_down_embed is not None:
|
|
||||||
# self.to_queries = nn.Sequential(
|
|
||||||
# nn.Linear(config.dim, self.dim_key * 2, bias=False),
|
|
||||||
# # nn.Unflatten(2, (2, self.n_heads, self.dim_key)) # 替代Rearrange
|
|
||||||
# )
|
|
||||||
|
|
||||||
# # 超参数
|
|
||||||
# self.product_key_topk = min(16, self.num_keys) # 确保不超过num_keys
|
|
||||||
# self.num_experts_per_head_topk = 1 # 最终每个头选取的专家数
|
|
||||||
|
|
||||||
def forward(self, x, db_value, pos_cis, past_key_value=None, use_cache=False):
|
|
||||||
# import pdb;pdb.set_trace()
|
|
||||||
# db_value = None
|
|
||||||
|
|
||||||
# # 如果有weight_down_embed,使用Product Key机制
|
|
||||||
# if self.weight_down_embed is not None:
|
|
||||||
# # 1. 生成queries
|
|
||||||
# batch_size, seq_len, dim = x.shape
|
|
||||||
|
|
||||||
# # collapse sequence dimension by averaging
|
|
||||||
# x_flat = x.mean(dim=1) # [batch_size, dim]
|
|
||||||
# queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
|
|
||||||
# queries = queries.reshape(batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
|
|
||||||
# queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
|
|
||||||
|
|
||||||
# # 2. 计算queries与keys的相似度
|
|
||||||
# sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
|
|
||||||
|
|
||||||
# # 3. 在两个子空间分别做top-k
|
|
||||||
# scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
|
|
||||||
# scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
|
|
||||||
# indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
|
|
||||||
|
|
||||||
# # 4. 组合两个子空间的分数和索引
|
|
||||||
# all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
|
|
||||||
# all_scores = all_scores.view(*all_scores.shape[:-2], -1)
|
|
||||||
|
|
||||||
# all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
|
|
||||||
# all_indices = all_indices.view(*all_indices.shape[:-2], -1)
|
|
||||||
|
|
||||||
# # 5. 最终top-k选择
|
|
||||||
# scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
|
|
||||||
# indices = all_indices.gather(-1, pk_indices)
|
|
||||||
|
|
||||||
# # 6. 从embedding中获取专家值
|
|
||||||
|
|
||||||
# # 从embedding中获取值
|
|
||||||
# flat_indices = indices.view(-1) # 将索引展平为一维张量
|
|
||||||
# db_values = self.weight_down_embed(flat_indices)
|
|
||||||
|
|
||||||
# # 重塑回原始形状
|
|
||||||
# db_value = db_values.view(batch_size, -1, dim)
|
|
||||||
|
|
||||||
|
|
||||||
# 注意力计算
|
|
||||||
h_attn, past_kv = self.attention(
|
h_attn, past_kv = self.attention(
|
||||||
self.attention_norm(x),
|
self.attention_norm(x),
|
||||||
pos_cis,
|
pos_cis,
|
||||||
past_key_value=past_key_value,
|
past_key_value=past_key_value,
|
||||||
use_cache=use_cache,
|
use_cache=use_cache
|
||||||
db_value=db_value
|
|
||||||
)
|
)
|
||||||
|
|
||||||
h_attn = self.cross_att(h_attn, db_value)
|
|
||||||
|
|
||||||
# 残差连接
|
|
||||||
h = x + h_attn
|
h = x + h_attn
|
||||||
|
|
||||||
# 前馈神经网络
|
|
||||||
out = h + self.feed_forward(self.ffn_norm(h))
|
out = h + self.feed_forward(self.ffn_norm(h))
|
||||||
return out, past_kv
|
return out, past_kv
|
||||||
|
|
||||||
class ExtractDB(nn.Module):
|
|
||||||
def __init__(self,params):
|
|
||||||
# 修改专家数量和知识维度,确保能开方
|
|
||||||
super().__init__()
|
|
||||||
self.batch_size = None
|
|
||||||
self.dim = params.dim
|
|
||||||
self.dim_key = self.dim // 2
|
|
||||||
self.num_experts = 10 * 10 # 100专家,确保是完全平方数
|
|
||||||
# 将knowledge_dim设置为与head_dim相同,以便在attention中直接使用
|
|
||||||
self.head_dim = params.dim // params.n_heads
|
|
||||||
self.knowledge_dim = 8*params.dim
|
|
||||||
|
|
||||||
# 使用register_buffer代替nn.Parameter,避免梯度问题
|
|
||||||
self.register_buffer('weight_down_embed', torch.randn(self.num_experts, self.knowledge_dim) * 0.02)
|
|
||||||
|
|
||||||
self.num_keys = int(math.sqrt(self.num_experts)) if self.num_experts > 0 else 0
|
|
||||||
self.product_key_topk = min(16, self.num_keys)
|
|
||||||
self.keys = nn.Parameter(torch.randn(self.num_keys, 2, self.dim_key) * 0.02)
|
|
||||||
self.num_experts_per_head_topk = 1
|
|
||||||
self.to_queries = nn.Sequential(
|
|
||||||
nn.Linear(params.dim, self.dim_key * 2, bias=False),
|
|
||||||
)
|
|
||||||
|
|
||||||
def q_to_k(self,x):
|
|
||||||
# 1. 生成queries
|
|
||||||
self.batch_size, seq_len, dim = x.shape
|
|
||||||
|
|
||||||
# collapse sequence dimension by averaging
|
|
||||||
x_flat = x.mean(dim=1) # [batch_size, dim]
|
|
||||||
|
|
||||||
queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
|
|
||||||
queries = queries.reshape(self.batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
|
|
||||||
queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
|
|
||||||
|
|
||||||
# 2. 计算queries与keys的相似度
|
|
||||||
sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
|
|
||||||
|
|
||||||
# 3. 在两个子空间分别做top-k
|
|
||||||
scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
|
|
||||||
scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
|
|
||||||
indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
|
|
||||||
|
|
||||||
# 4. 组合两个子空间的分数和索引
|
|
||||||
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
|
|
||||||
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
|
|
||||||
|
|
||||||
all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
|
|
||||||
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
|
|
||||||
|
|
||||||
# 5. 最终top-k选择
|
|
||||||
scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
|
|
||||||
indices = all_indices.gather(-1, pk_indices)
|
|
||||||
flat_indices = indices.view(-1)
|
|
||||||
return flat_indices
|
|
||||||
|
|
||||||
def get_data(self, index):
|
|
||||||
# 直接从GPU获取embedding
|
|
||||||
db_values = self.weight_down_embed[index]
|
|
||||||
db_value = db_values.view(self.batch_size, -1, self.dim)
|
|
||||||
return db_value
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def updata_value(self, k, v):
|
|
||||||
# 直接更新buffer上的值 (不需要梯度)
|
|
||||||
v_reshaped = v.view(v.size(0), -1)
|
|
||||||
# 确保数据类型匹配
|
|
||||||
v_reshaped = v_reshaped.to(dtype=self.weight_down_embed.dtype)
|
|
||||||
self.weight_down_embed[k] = v_reshaped
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class MiniMindLM(PreTrainedModel):
|
class MiniMindLM(PreTrainedModel):
|
||||||
config_class = LMConfig
|
config_class = LMConfig
|
||||||
@ -515,44 +292,14 @@ class MiniMindLM(PreTrainedModel):
|
|||||||
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
|
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
|
||||||
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
|
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
|
||||||
self.dropout = nn.Dropout(params.dropout)
|
self.dropout = nn.Dropout(params.dropout)
|
||||||
# 移除旧的weight_down_embed声明
|
|
||||||
self.extract_db = ExtractDB(self.params)
|
|
||||||
|
|
||||||
# 将self.weight_down_embed传递给每个MiniMindBlock
|
|
||||||
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
|
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
|
||||||
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
||||||
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
|
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
|
||||||
self.tok_embeddings.weight = self.output.weight
|
self.tok_embeddings.weight = self.output.weight
|
||||||
|
|
||||||
# Calculate input dimension
|
|
||||||
input_dim = (self.params.max_seq_len-1)*self.params.n_layers
|
|
||||||
# Use a bottleneck architecture to reduce parameters
|
|
||||||
bottleneck_dim = 256 # Significantly smaller bottleneck dimension
|
|
||||||
|
|
||||||
# Factorized shared downsampling using two smaller convolutions
|
|
||||||
self.shared_downsample = nn.Sequential(
|
|
||||||
# First reduce input dimension to bottleneck
|
|
||||||
nn.Conv1d(input_dim, bottleneck_dim, kernel_size=1, padding='same'),
|
|
||||||
nn.ReLU(), # Non-linearity to improve representation capacity
|
|
||||||
# Then expand to target dimension
|
|
||||||
nn.Conv1d(bottleneck_dim, 128*8, kernel_size=1, padding='same')
|
|
||||||
)
|
|
||||||
|
|
||||||
# Specific layers for v path
|
|
||||||
self.downsample_v_specific = nn.Sequential(
|
|
||||||
nn.Conv1d(128*8, 128, kernel_size=1, padding='same'),
|
|
||||||
nn.Conv1d(128, 8, kernel_size=1, padding='same')
|
|
||||||
)
|
|
||||||
|
|
||||||
# Specific layers for q path
|
|
||||||
self.downsample_q_specific = nn.Sequential(
|
|
||||||
nn.Conv1d(128*8, 512, kernel_size=1, padding='same')
|
|
||||||
)
|
|
||||||
self.register_buffer("pos_cis",
|
self.register_buffer("pos_cis",
|
||||||
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta),
|
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta),
|
||||||
persistent=False)
|
persistent=False)
|
||||||
self.OUT = CausalLMOutputWithPast()
|
self.OUT = CausalLMOutputWithPast()
|
||||||
self.params = params
|
|
||||||
|
|
||||||
def forward(self,
|
def forward(self,
|
||||||
input_ids: Optional[torch.Tensor] = None,
|
input_ids: Optional[torch.Tensor] = None,
|
||||||
@ -565,45 +312,13 @@ class MiniMindLM(PreTrainedModel):
|
|||||||
h = self.dropout(self.tok_embeddings(input_ids))
|
h = self.dropout(self.tok_embeddings(input_ids))
|
||||||
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
|
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
|
||||||
past_kvs = []
|
past_kvs = []
|
||||||
h_list = []
|
|
||||||
|
|
||||||
for l, layer in enumerate(self.layers):
|
for l, layer in enumerate(self.layers):
|
||||||
# 禁用数据库模式,使用固定值替代数据库查询
|
|
||||||
if self.params.disable_db:
|
|
||||||
# 创建一个形状为[batch_size, n_layers, dim]的tensor,所有元素值为1e-4
|
|
||||||
batch_size = h.size(0)
|
|
||||||
db_value = torch.full((batch_size, self.n_layers, self.params.dim), 1e-4,
|
|
||||||
dtype=h.dtype, device=h.device)
|
|
||||||
else:
|
|
||||||
# 正常模式,使用数据库查询
|
|
||||||
index = self.extract_db.q_to_k(h)
|
|
||||||
db_value = self.extract_db.get_data(index)
|
|
||||||
|
|
||||||
h, past_kv = layer(
|
h, past_kv = layer(
|
||||||
h, db_value, pos_cis,
|
h, pos_cis,
|
||||||
past_key_value=past_key_values[l],
|
past_key_value=past_key_values[l],
|
||||||
use_cache=use_cache
|
use_cache=use_cache
|
||||||
)
|
)
|
||||||
|
|
||||||
past_kvs.append(past_kv)
|
past_kvs.append(past_kv)
|
||||||
h_list.append(h.unsqueeze(0))
|
|
||||||
|
|
||||||
h_tensor = torch.cat(h_list, dim=0).permute(1, 0, 2, 3)
|
|
||||||
|
|
||||||
# 只在非禁用数据库模式下执行数据库更新逻辑
|
|
||||||
if not self.params.disable_db:
|
|
||||||
# 使用detach()分离计算图,避免多次反向传播
|
|
||||||
h_tensor_detached = h_tensor.detach()
|
|
||||||
h_tensor_detached = h_tensor_detached.reshape(h_tensor_detached.shape[0], -1, self.params.dim)
|
|
||||||
|
|
||||||
# 数据库更新逻辑与主计算图分离
|
|
||||||
with torch.no_grad():
|
|
||||||
# Compute shared downsampling layer once
|
|
||||||
shared_features = self.shared_downsample(h_tensor_detached)
|
|
||||||
z_v = self.downsample_v_specific(shared_features)
|
|
||||||
z_q = self.downsample_q_specific(shared_features)
|
|
||||||
z_k = self.extract_db.q_to_k(z_q)
|
|
||||||
self.extract_db.updata_value(z_k, z_v)
|
|
||||||
|
|
||||||
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
||||||
logits = self.output(self.norm(h)[:, slice_indices, :])
|
logits = self.output(self.norm(h)[:, slice_indices, :])
|
||||||
|
Loading…
x
Reference in New Issue
Block a user