正常尺寸

This commit is contained in:
iomgaa 2025-05-11 11:58:13 +08:00
parent cb286d26d1
commit 5351ae8a6a

View File

@ -11,14 +11,8 @@ import torch.nn.functional as F
from torch import nn
from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast
from torch import nn, einsum
from einops import rearrange, repeat
def exists(val):
return val is not None
# RMSNorm 类定义了一个用于归一化输入张量的模块。
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
@ -31,7 +25,7 @@ class RMSNorm(torch.nn.Module):
def forward(self, x):
return self.weight * self._norm(x.float()).type_as(x)
# precompute_pos_cis 函数用于预计算位置编码。
def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
@ -39,7 +33,7 @@ def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return pos_cis
# apply_rotary_emb 函数用于应用旋转位置编码。
def apply_rotary_emb(xq, xk, pos_cis):
def unite_shape(pos_cis, x):
ndim = x.ndim
@ -55,7 +49,7 @@ def apply_rotary_emb(xq, xk, pos_cis):
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
# repeat_kv 函数用于重复键值对。
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
@ -94,15 +88,13 @@ class Attention(nn.Module):
x: torch.Tensor,
pos_cis: torch.Tensor,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
use_cache=False,
db_value=None):
bsz, seq_len, _ = x.shape #bsz: 批量大小, seq_len: 序列长度, _: 隐藏维度
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) #将输入张量x分别通过线性层wq, wk, wv进行变换得到查询、键和值。
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim) #将变换后的张量xq重塑为形状为(bsz, seq_len, n_local_heads, head_dim)的形状。
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xk重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xv重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
use_cache=False):
bsz, seq_len, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
# 应用旋转位置编码
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
# kv_cache实现
if past_key_value is not None:
@ -110,40 +102,11 @@ class Attention(nn.Module):
xv = torch.cat([past_key_value[1], xv], dim=1)
past_kv = (xk, xv) if use_cache else None
# 重复键值对
xq, xk, xv = (
xq.transpose(1, 2),
repeat_kv(xk, self.n_rep).transpose(1, 2),
repeat_kv(xv, self.n_rep).transpose(1, 2)
)
# 如果提供了db_value根据头的数量调整它的形状并与xv合并
if db_value is not None:
# 确保db_value的形状与xv兼容假设db_value形状为[B, N, H, D]
if db_value.ndim == 4: # [B, N, H, D]
db_value = db_value.transpose(1, 2) # -> [B, H, N, D]
# 检查是否需要调整D维度
if db_value.shape[-1] != xv.shape[-1]:
# 如果db_value的维度与xv不同可以添加一个投影层
# 或者在这里使用简单的调整方法
# 这里我们简单地通过均值池化或重复来调整维度
if db_value.shape[-1] > xv.shape[-1]:
# 降维
factor = db_value.shape[-1] // xv.shape[-1]
db_value = db_value.view(bsz, self.n_local_heads, seq_len, factor, xv.shape[-1])
db_value = db_value.mean(dim=3)
else:
# 升维
factor = xv.shape[-1] // db_value.shape[-1]
db_value = db_value.unsqueeze(-1).repeat(1, 1, 1, 1, factor)
db_value = db_value.view(bsz, self.n_local_heads, seq_len, xv.shape[-1])
# 将db_value与xv相加或融合
# 这里我们简单地将它们相加,但你也可以使用其他融合方法
xv = xv + db_value
# 使用Flash Attention
if self.flash and seq_len != 1:
dropout_p = self.dropout if self.training else 0.0
output = F.scaled_dot_product_attention(
@ -164,53 +127,6 @@ class Attention(nn.Module):
return output, past_kv
class CrossAttention(nn.Module):
def __init__(
self,
config
):
super().__init__()
self.config = config
self.num_heads = 8
self.head_dim = self.config.dim // self.num_heads
self.to_q = nn.Linear(self.config.dim, self.config.dim, bias=False)
self.to_k = nn.Linear(self.config.dim, self.config.dim, bias=False)
self.to_v = nn.Linear(self.config.dim, self.config.dim, bias=False)
self.to_out = nn.Linear(self.config.dim, self.config.dim, bias=False)
def forward(self, x, db, context_mask=None, pos_emb=None):
batch_size = x.size(0)
# 分离多头
q = self.to_q(x).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
k = self.to_k(db).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
v = self.to_v(db).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
if pos_emb is not None:
pos_emb = pos_emb.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
q = q + pos_emb
k = k + pos_emb
v = v + pos_emb
attn_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
if context_mask is not None:
expanded_mask = context_mask.unsqueeze(1).expand(-1, self.num_heads, -1, -1)
attn_scores = attn_scores.masked_fill(expanded_mask == 0, -1e10)
attn_weights = F.softmax(attn_scores, dim=-1)
context = torch.matmul(attn_weights, v)
context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.config.dim)
context = self.to_out(context)
return context
class FeedForward(nn.Module):
def __init__(self, config: LMConfig):
super().__init__()
@ -349,162 +265,23 @@ class MiniMindBlock(nn.Module):
self.dim = config.dim
self.head_dim = config.dim // config.n_heads
self.attention = Attention(config)
self.cross_att = CrossAttention(config)
self.layer_id = layer_id
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
# 假设num_experts是已定义的总专家数量的平方根
# 查询生成的参数
# 创建查询生成模块
# if weight_down_embed is not None:
# self.to_queries = nn.Sequential(
# nn.Linear(config.dim, self.dim_key * 2, bias=False),
# # nn.Unflatten(2, (2, self.n_heads, self.dim_key)) # 替代Rearrange
# )
# # 超参数
# self.product_key_topk = min(16, self.num_keys) # 确保不超过num_keys
# self.num_experts_per_head_topk = 1 # 最终每个头选取的专家数
def forward(self, x, db_value, pos_cis, past_key_value=None, use_cache=False):
# import pdb;pdb.set_trace()
# db_value = None
# # 如果有weight_down_embed使用Product Key机制
# if self.weight_down_embed is not None:
# # 1. 生成queries
# batch_size, seq_len, dim = x.shape
# # collapse sequence dimension by averaging
# x_flat = x.mean(dim=1) # [batch_size, dim]
# queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
# queries = queries.reshape(batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
# queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
# # 2. 计算queries与keys的相似度
# sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
# # 3. 在两个子空间分别做top-k
# scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
# scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
# indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
# # 4. 组合两个子空间的分数和索引
# all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
# all_scores = all_scores.view(*all_scores.shape[:-2], -1)
# all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
# all_indices = all_indices.view(*all_indices.shape[:-2], -1)
# # 5. 最终top-k选择
# scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
# indices = all_indices.gather(-1, pk_indices)
# # 6. 从embedding中获取专家值
# # 从embedding中获取值
# flat_indices = indices.view(-1) # 将索引展平为一维张量
# db_values = self.weight_down_embed(flat_indices)
# # 重塑回原始形状
# db_value = db_values.view(batch_size, -1, dim)
# 注意力计算
def forward(self, x, pos_cis, past_key_value=None, use_cache=False):
h_attn, past_kv = self.attention(
self.attention_norm(x),
pos_cis,
past_key_value=past_key_value,
use_cache=use_cache,
db_value=db_value
use_cache=use_cache
)
h_attn = self.cross_att(h_attn, db_value)
# 残差连接
h = x + h_attn
# 前馈神经网络
out = h + self.feed_forward(self.ffn_norm(h))
return out, past_kv
class ExtractDB(nn.Module):
def __init__(self,params):
# 修改专家数量和知识维度,确保能开方
super().__init__()
self.batch_size = None
self.dim = params.dim
self.dim_key = self.dim // 2
self.num_experts = 10 * 10 # 100专家确保是完全平方数
# 将knowledge_dim设置为与head_dim相同以便在attention中直接使用
self.head_dim = params.dim // params.n_heads
self.knowledge_dim = 8*params.dim
# 使用register_buffer代替nn.Parameter避免梯度问题
self.register_buffer('weight_down_embed', torch.randn(self.num_experts, self.knowledge_dim) * 0.02)
self.num_keys = int(math.sqrt(self.num_experts)) if self.num_experts > 0 else 0
self.product_key_topk = min(16, self.num_keys)
self.keys = nn.Parameter(torch.randn(self.num_keys, 2, self.dim_key) * 0.02)
self.num_experts_per_head_topk = 1
self.to_queries = nn.Sequential(
nn.Linear(params.dim, self.dim_key * 2, bias=False),
)
def q_to_k(self,x):
# 1. 生成queries
self.batch_size, seq_len, dim = x.shape
# collapse sequence dimension by averaging
x_flat = x.mean(dim=1) # [batch_size, dim]
queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
queries = queries.reshape(self.batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
# 2. 计算queries与keys的相似度
sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
# 3. 在两个子空间分别做top-k
scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
# 4. 组合两个子空间的分数和索引
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
# 5. 最终top-k选择
scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
indices = all_indices.gather(-1, pk_indices)
flat_indices = indices.view(-1)
return flat_indices
def get_data(self, index):
# 直接从GPU获取embedding
db_values = self.weight_down_embed[index]
db_value = db_values.view(self.batch_size, -1, self.dim)
return db_value
@torch.no_grad()
def updata_value(self, k, v):
# 直接更新buffer上的值 (不需要梯度)
v_reshaped = v.view(v.size(0), -1)
# 确保数据类型匹配
v_reshaped = v_reshaped.to(dtype=self.weight_down_embed.dtype)
self.weight_down_embed[k] = v_reshaped
class MiniMindLM(PreTrainedModel):
config_class = LMConfig
@ -515,44 +292,14 @@ class MiniMindLM(PreTrainedModel):
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.dropout = nn.Dropout(params.dropout)
# 移除旧的weight_down_embed声明
self.extract_db = ExtractDB(self.params)
# 将self.weight_down_embed传递给每个MiniMindBlock
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
self.tok_embeddings.weight = self.output.weight
# Calculate input dimension
input_dim = (self.params.max_seq_len-1)*self.params.n_layers
# Use a bottleneck architecture to reduce parameters
bottleneck_dim = 256 # Significantly smaller bottleneck dimension
# Factorized shared downsampling using two smaller convolutions
self.shared_downsample = nn.Sequential(
# First reduce input dimension to bottleneck
nn.Conv1d(input_dim, bottleneck_dim, kernel_size=1, padding='same'),
nn.ReLU(), # Non-linearity to improve representation capacity
# Then expand to target dimension
nn.Conv1d(bottleneck_dim, 128*8, kernel_size=1, padding='same')
)
# Specific layers for v path
self.downsample_v_specific = nn.Sequential(
nn.Conv1d(128*8, 128, kernel_size=1, padding='same'),
nn.Conv1d(128, 8, kernel_size=1, padding='same')
)
# Specific layers for q path
self.downsample_q_specific = nn.Sequential(
nn.Conv1d(128*8, 512, kernel_size=1, padding='same')
)
self.register_buffer("pos_cis",
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta),
persistent=False)
self.OUT = CausalLMOutputWithPast()
self.params = params
def forward(self,
input_ids: Optional[torch.Tensor] = None,
@ -565,46 +312,14 @@ class MiniMindLM(PreTrainedModel):
h = self.dropout(self.tok_embeddings(input_ids))
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
past_kvs = []
h_list = []
for l, layer in enumerate(self.layers):
# 禁用数据库模式,使用固定值替代数据库查询
if self.params.disable_db:
# 创建一个形状为[batch_size, n_layers, dim]的tensor所有元素值为1e-4
batch_size = h.size(0)
db_value = torch.full((batch_size, self.n_layers, self.params.dim), 1e-4,
dtype=h.dtype, device=h.device)
else:
# 正常模式,使用数据库查询
index = self.extract_db.q_to_k(h)
db_value = self.extract_db.get_data(index)
h, past_kv = layer(
h, db_value, pos_cis,
h, pos_cis,
past_key_value=past_key_values[l],
use_cache=use_cache
)
past_kvs.append(past_kv)
h_list.append(h.unsqueeze(0))
h_tensor = torch.cat(h_list, dim=0).permute(1, 0, 2, 3)
# 只在非禁用数据库模式下执行数据库更新逻辑
if not self.params.disable_db:
# 使用detach()分离计算图,避免多次反向传播
h_tensor_detached = h_tensor.detach()
h_tensor_detached = h_tensor_detached.reshape(h_tensor_detached.shape[0], -1, self.params.dim)
# 数据库更新逻辑与主计算图分离
with torch.no_grad():
# Compute shared downsampling layer once
shared_features = self.shared_downsample(h_tensor_detached)
z_v = self.downsample_v_specific(shared_features)
z_q = self.downsample_q_specific(shared_features)
z_k = self.extract_db.q_to_k(z_q)
self.extract_db.updata_value(z_k, z_v)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.output(self.norm(h)[:, slice_indices, :])
aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward))
@ -667,4 +382,4 @@ class MiniMindLM(PreTrainedModel):
input_ids = torch.cat((input_ids, input_ids_next), dim=1)
yield input_ids[:, start:]
if input_ids_next.item() == eos_token_id:
break
break