Merge branch 'master' into wandb
This commit is contained in:
commit
5dd4e15aa2
@ -74,7 +74,8 @@ def train_epoch(epoch, wandb):
|
||||
loss.item() * args.accumulation_steps,
|
||||
optimizer.param_groups[-1]['lr'],
|
||||
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
||||
if wandb is not None:
|
||||
|
||||
if (wandb is not None) and (not ddp or dist.get_rank() == 0):
|
||||
wandb.log({"loss": loss.item() * args.accumulation_steps,
|
||||
"lr": optimizer.param_groups[-1]['lr'],
|
||||
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
||||
@ -115,6 +116,7 @@ def init_distributed_mode():
|
||||
DEVICE = f"cuda:{ddp_local_rank}"
|
||||
torch.cuda.set_device(DEVICE)
|
||||
|
||||
|
||||
# torchrun --nproc_per_node 2 1-pretrain.py
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="MiniMind Pretraining")
|
||||
@ -149,6 +151,7 @@ if __name__ == "__main__":
|
||||
args.wandb_run_name = f"MiniMind-Pretrain-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
|
||||
|
||||
ctx = nullcontext() if device_type == "cpu" else torch.cuda.amp.autocast()
|
||||
|
||||
ddp = int(os.environ.get("RANK", -1)) != -1 # is this a ddp run?
|
||||
ddp_local_rank, DEVICE = 0, "cuda:0"
|
||||
if ddp:
|
||||
|
@ -80,8 +80,9 @@ def train_epoch(epoch, wandb):
|
||||
loss.item(),
|
||||
optimizer.param_groups[-1]['lr'],
|
||||
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
||||
if wandb is not None:
|
||||
wandb.log({"loss": loss.item(),
|
||||
|
||||
if (wandb is not None) and (not ddp or dist.get_rank() == 0):
|
||||
wandb.log({"loss": loss,
|
||||
"lr": optimizer.param_groups[-1]['lr'],
|
||||
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
||||
|
||||
|
@ -102,8 +102,8 @@ def find_all_linear_names(model):
|
||||
|
||||
|
||||
def init_model():
|
||||
model_name_or_path = "./minimind"
|
||||
tokenizer_name_or_path = "./minimind"
|
||||
model_name_or_path = "./minimind-v1-small"
|
||||
tokenizer_name_or_path = "./minimind-v1-small"
|
||||
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name_or_path, trust_remote_code=True, use_fast=False)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True).to(args.device)
|
||||
|
||||
|
@ -69,10 +69,9 @@ https://github.com/user-attachments/assets/88b98128-636e-43bc-a419-b1b1403c2055
|
||||
|
||||
- 公开MiniMind模型代码(包含Dense和MoE模型)、Pretrain、SFT指令微调、LoRA微调、DPO偏好优化的全过程代码、数据集和来源。
|
||||
- 兼容`transformers`、`accelerate`、`trl`、`peft`等流行框架。
|
||||
- 训练支持单机单卡、单机多卡(DDP、DeepSpeed)训练。训练过程中支持在任意位置停止,及在任意位置继续训练。
|
||||
- 训练支持单机单卡、单机多卡(DDP、DeepSpeed)训练,使用wandb可视化训练流程。支持在任意位置停止,及在任意位置继续训练。
|
||||
- 在Ceval数据集上进行模型测试的代码。
|
||||
- 实现Openai-Api基本的chat接口,便于集成到第三方ChatUI使用(FastGPT、Open-WebUI等)。
|
||||
- 使用wandb可视化训练流程。
|
||||
|
||||
希望此开源项目可以帮助LLM初学者快速入门!
|
||||
|
||||
@ -696,6 +695,8 @@ minimind模型本身没有使用较大的数据集训练,也没有针对回答
|
||||
|
||||
<a href="https://github.com/chuanzhubin"><img src="https://avatars.githubusercontent.com/u/2813798" width="70px" height="70px"/></a>
|
||||
|
||||
<a href="https://github.com/iomgaa-ycz"><img src="https://avatars.githubusercontent.com/u/124225682" width="70px" height="70px"/></a>
|
||||
|
||||
|
||||
## 😊鸣谢
|
||||
|
||||
|
@ -75,13 +75,10 @@ The project includes:
|
||||
- Public MiniMind model code (including Dense and MoE models), code for Pretrain, SFT instruction fine-tuning, LoRA
|
||||
fine-tuning, and DPO preference optimization, along with datasets and sources.
|
||||
- Compatibility with popular frameworks such as `transformers`, `accelerate`, `trl`, and `peft`.
|
||||
- Training support for single-GPU and multi-GPU setups(DDP、DeepSpeed). The training process allows for stopping and
|
||||
resuming at any
|
||||
point.
|
||||
- Training support for single-GPU and multi-GPU setups(DDP、DeepSpeed), Use wandb to visualize the training process. The training process allows for stopping and resuming at any point.
|
||||
- Code for testing the model on the Ceval dataset.
|
||||
- Implementation of a basic chat interface compatible with OpenAI's API, facilitating integration into third-party Chat
|
||||
UIs (such as FastGPT, Open-WebUI, etc.).
|
||||
- Use wandb to visualize the training process.
|
||||
|
||||
We hope this open-source project helps LLM beginners get started quickly!
|
||||
|
||||
@ -764,6 +761,8 @@ your model with third-party UIs, such as fastgpt, OpenWebUI, etc.
|
||||
|
||||
<a href="https://github.com/chuanzhubin"><img src="https://avatars.githubusercontent.com/u/2813798" width="70px" height="70px"/></a>
|
||||
|
||||
<a href="https://github.com/iomgaa-ycz"><img src="https://avatars.githubusercontent.com/u/124225682" width="70px" height="70px"/></a>
|
||||
|
||||
|
||||
## 😊Thanks for
|
||||
|
||||
|
@ -95,7 +95,7 @@ def process_seq_monkey(chunk_size=50000):
|
||||
|
||||
if doc_ids:
|
||||
arr = np.array(doc_ids, dtype=np.uint16)
|
||||
with open(f'./dataset/clean_seq_monkey.bin', 'wb') as f:
|
||||
with open(f'./dataset/clean_seq_monkey.bin', 'ab') as f:
|
||||
f.write(arr.tobytes())
|
||||
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user