update readme

This commit is contained in:
gongjy 2024-10-27 21:25:55 +08:00
parent 0d10efeeed
commit 6d7a988365
2 changed files with 16 additions and 14 deletions

View File

@ -248,7 +248,7 @@ streamlit run fast_inference.py
# and
python 3-full_sft.py
```
> 假设你的设备有N (N1) 张显卡:
* 单机N卡启动训练(DDP)
@ -469,13 +469,13 @@ MobileLLM提出架构的深度比宽度更重要「深而窄」的「瘦长
### 训练完成的模型权重
[百度网盘](https://pan.baidu.com/s/1KUfSzEkSXYbCCBj0Pw-9fA?pwd=6666)
[🔗百度网盘](https://pan.baidu.com/s/1KUfSzEkSXYbCCBj0Pw-9fA?pwd=6666)
| Model Name | params | Config | pretrain_model | single_sft_model | multi_sft_model | rl_model |
|-------------------|--------|-----------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|
| minimind-v1-small | 26M | d_model=512<br/>n_layers=8 | [链接](https://pan.baidu.com/s/1wP_cAIc8cgaJ6CxUmR9ECQ?pwd=6666) | [链接](https://pan.baidu.com/s/1_COe0FQRDmeapSsvArahCA?pwd=6666) | [链接](https://pan.baidu.com/s/1GsGsWSL0Dckl0YPRXiBIFQ?pwd=6666) | [链接](https://pan.baidu.com/s/1C_dOCzNxr_XF3Qk3pkdrwg?pwd=6666) |
| minimind-v1-moe | 4×26M | d_model=512<br/>n_layers=8 | [链接](https://pan.baidu.com/s/1IZdkzPRhbZ_bSsRL8vInjg?pwd=6666) | [链接](https://pan.baidu.com/s/1tqB-GMvuiGQBvEl-yZ-oBw?pwd=6666) | [链接](https://pan.baidu.com/s/1GHJ2T4904EcT1u8l1rVqtg?pwd=6666) | - |
| minimind-v1 | 108M | d_model=768<br/>n_layers=16 | [链接](https://pan.baidu.com/s/1B60jYo4T8OmJI0ooqsixaA?pwd=6666) | [链接](https://pan.baidu.com/s/1p713loS7EfwHQf3G9eYI3Q?pwd=6666) | [链接](https://pan.baidu.com/s/12iHGpAs6R0kqsOnGtgK6vQ?pwd=6666) | [链接](https://pan.baidu.com/s/1vmUrir-UuucqBftqNPI4ng?pwd=6666) |
| Model Name | params | Config | pretrain_model | single_sft_model | multi_sft_model | rl_model |
|-------------------|--------|-----------------------------|------------------------|------------------------------------|-----------------------------------|--------------|
| minimind-v1-small | 26M | d_model=512<br/>n_layers=8 | `pretrain_512.pth` | `single_chat/full_sft_512.pth` | `multi_chat/full_sft_512.pth` | `rl_512.pth` |
| minimind-v1-moe | 4×26M | d_model=512<br/>n_layers=8 | `pretrain_512_moe.pth` | `single_chat/full_sft_512_moe.pth` | `multi_chat/full_sft_512_moe.pth` | - |
| minimind-v1 | 108M | d_model=768<br/>n_layers=16 | `pretrain_768.pth` | `single_chat/full_sft_768.pth` | `multi_chat/full_sft_768.pth` | `rl_768.pth` |
---
@ -486,7 +486,8 @@ MobileLLM提出架构的深度比宽度更重要「深而窄」的「瘦长
> [!TIP]
> 测试基于「单轮对话full_sft」和「DPO强化学习对齐」的minimind模型对比。
模型文件[百度网盘](https://pan.baidu.com/s/1KUfSzEkSXYbCCBj0Pw-9fA?pwd=6666),其中 `rl_<dim>.pth` 即为「DPO强化学习对齐」后的minimind模型权重。
模型文件[百度网盘](https://pan.baidu.com/s/1KUfSzEkSXYbCCBj0Pw-9fA?pwd=6666),其中 `rl_<dim>.pth`
即为「DPO强化学习对齐」后的minimind模型权重。
```text
[Q]: 你叫什么名字?
@ -515,6 +516,7 @@ MobileLLM提出架构的深度比宽度更重要「深而窄」的「瘦长
```
### 👉效果总结
* RLHF数据使用大约10万条full_sft模型在简洁性和信息准确性方面表现更好rl模型在回答中提供了更多的背景信息但信息准确性有待改进。
* 总的来说RLHF后的模型倾向于学习说更多有礼貌但无用的废话讨好“对话”本身而对信息准确性则有轻微损失。
* 天下没有免费的午餐还需要继续提升RLHF数据集的质量也要接受模型能力无法避免的损失(程度有轻重)。

View File

@ -531,13 +531,13 @@ better with the scaling law for small models.
### Trained Model Weights
[baidu](https://pan.baidu.com/s/1KUfSzEkSXYbCCBj0Pw-9fA?pwd=6666)
[🔗Baidu Netdisk](https://pan.baidu.com/s/1KUfSzEkSXYbCCBj0Pw-9fA?pwd=6666)
| Model Name | params | Config | pretrain_model | single_sft_model | multi_sft_model | rl_model |
|-------------------|--------|-----------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|----------|
| minimind-v1-small | 26M | d_model=512<br/>n_layers=8 | [URL](https://pan.baidu.com/s/1wP_cAIc8cgaJ6CxUmR9ECQ?pwd=6666) | [URL](https://pan.baidu.com/s/1_COe0FQRDmeapSsvArahCA?pwd=6666) | [URL](https://pan.baidu.com/s/1GsGsWSL0Dckl0YPRXiBIFQ?pwd=6666) | | [URL](https://pan.baidu.com/s/1C_dOCzNxr_XF3Qk3pkdrwg?pwd=6666) |
| minimind-v1-moe | 4×26M | d_model=512<br/>n_layers=8 | [URL](https://pan.baidu.com/s/1IZdkzPRhbZ_bSsRL8vInjg?pwd=6666) | [URL](https://pan.baidu.com/s/1tqB-GMvuiGQBvEl-yZ-oBw?pwd=6666) | [URL](https://pan.baidu.com/s/1GHJ2T4904EcT1u8l1rVqtg?pwd=6666) | | - |
| minimind-v1 | 108M | d_model=768<br/>n_layers=16 | [URL](https://pan.baidu.com/s/1B60jYo4T8OmJI0ooqsixaA?pwd=6666) | [URL](https://pan.baidu.com/s/1p713loS7EfwHQf3G9eYI3Q?pwd=6666) | [URL](https://pan.baidu.com/s/12iHGpAs6R0kqsOnGtgK6vQ?pwd=6666) | | [URL](https://pan.baidu.com/s/1vmUrir-UuucqBftqNPI4ng?pwd=6666) |
| Model Name | params | Config | pretrain_model | single_sft_model | multi_sft_model | rl_model |
|-------------------|--------|-----------------------------|------------------------|------------------------------------|-----------------------------------|--------------|
| minimind-v1-small | 26M | d_model=512<br/>n_layers=8 | `pretrain_512.pth` | `single_chat/full_sft_512.pth` | `multi_chat/full_sft_512.pth` | `rl_512.pth` |
| minimind-v1-moe | 4×26M | d_model=512<br/>n_layers=8 | `pretrain_512_moe.pth` | `single_chat/full_sft_512_moe.pth` | `multi_chat/full_sft_512_moe.pth` | - |
| minimind-v1 | 108M | d_model=768<br/>n_layers=16 | `pretrain_768.pth` | `single_chat/full_sft_768.pth` | `multi_chat/full_sft_768.pth` | `rl_768.pth` |
---