From 6d7a988365db19163a35f01be8136433723ffe6d Mon Sep 17 00:00:00 2001 From: gongjy <2474590974@qq.com> Date: Sun, 27 Oct 2024 21:25:55 +0800 Subject: [PATCH] update readme --- README.md | 18 ++++++++++-------- README_en.md | 12 ++++++------ 2 files changed, 16 insertions(+), 14 deletions(-) diff --git a/README.md b/README.md index 6ac5837..0265d7c 100644 --- a/README.md +++ b/README.md @@ -248,7 +248,7 @@ streamlit run fast_inference.py # and python 3-full_sft.py ``` - + > 假设你的设备有N (N>1) 张显卡: * 单机N卡启动训练(DDP) @@ -469,13 +469,13 @@ MobileLLM提出架构的深度比宽度更重要,「深而窄」的「瘦长 ### 训练完成的模型权重 -[百度网盘](https://pan.baidu.com/s/1KUfSzEkSXYbCCBj0Pw-9fA?pwd=6666) +[🔗百度网盘](https://pan.baidu.com/s/1KUfSzEkSXYbCCBj0Pw-9fA?pwd=6666) -| Model Name | params | Config | pretrain_model | single_sft_model | multi_sft_model | rl_model | -|-------------------|--------|-----------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------| -| minimind-v1-small | 26M | d_model=512
n_layers=8 | [链接](https://pan.baidu.com/s/1wP_cAIc8cgaJ6CxUmR9ECQ?pwd=6666) | [链接](https://pan.baidu.com/s/1_COe0FQRDmeapSsvArahCA?pwd=6666) | [链接](https://pan.baidu.com/s/1GsGsWSL0Dckl0YPRXiBIFQ?pwd=6666) | [链接](https://pan.baidu.com/s/1C_dOCzNxr_XF3Qk3pkdrwg?pwd=6666) | -| minimind-v1-moe | 4×26M | d_model=512
n_layers=8 | [链接](https://pan.baidu.com/s/1IZdkzPRhbZ_bSsRL8vInjg?pwd=6666) | [链接](https://pan.baidu.com/s/1tqB-GMvuiGQBvEl-yZ-oBw?pwd=6666) | [链接](https://pan.baidu.com/s/1GHJ2T4904EcT1u8l1rVqtg?pwd=6666) | - | -| minimind-v1 | 108M | d_model=768
n_layers=16 | [链接](https://pan.baidu.com/s/1B60jYo4T8OmJI0ooqsixaA?pwd=6666) | [链接](https://pan.baidu.com/s/1p713loS7EfwHQf3G9eYI3Q?pwd=6666) | [链接](https://pan.baidu.com/s/12iHGpAs6R0kqsOnGtgK6vQ?pwd=6666) | [链接](https://pan.baidu.com/s/1vmUrir-UuucqBftqNPI4ng?pwd=6666) | +| Model Name | params | Config | pretrain_model | single_sft_model | multi_sft_model | rl_model | +|-------------------|--------|-----------------------------|------------------------|------------------------------------|-----------------------------------|--------------| +| minimind-v1-small | 26M | d_model=512
n_layers=8 | `pretrain_512.pth` | `single_chat/full_sft_512.pth` | `multi_chat/full_sft_512.pth` | `rl_512.pth` | +| minimind-v1-moe | 4×26M | d_model=512
n_layers=8 | `pretrain_512_moe.pth` | `single_chat/full_sft_512_moe.pth` | `multi_chat/full_sft_512_moe.pth` | - | +| minimind-v1 | 108M | d_model=768
n_layers=16 | `pretrain_768.pth` | `single_chat/full_sft_768.pth` | `multi_chat/full_sft_768.pth` | `rl_768.pth` | --- @@ -486,7 +486,8 @@ MobileLLM提出架构的深度比宽度更重要,「深而窄」的「瘦长 > [!TIP] > 测试基于「单轮对话full_sft」和「DPO强化学习对齐」的minimind模型对比。 -模型文件[百度网盘](https://pan.baidu.com/s/1KUfSzEkSXYbCCBj0Pw-9fA?pwd=6666),其中 `rl_.pth` 即为「DPO强化学习对齐」后的minimind模型权重。 +模型文件[百度网盘](https://pan.baidu.com/s/1KUfSzEkSXYbCCBj0Pw-9fA?pwd=6666),其中 `rl_.pth` +即为「DPO强化学习对齐」后的minimind模型权重。 ```text [Q]: 你叫什么名字? @@ -515,6 +516,7 @@ MobileLLM提出架构的深度比宽度更重要,「深而窄」的「瘦长 ``` ### 👉效果总结 + * RLHF数据使用大约10万条;full_sft模型在简洁性和信息准确性方面表现更好;rl模型在回答中提供了更多的背景信息,但信息准确性有待改进。 * 总的来说RLHF后的模型倾向于学习:说更多有礼貌但无用的废话讨好“对话”本身,而对信息准确性则有轻微损失。 * 天下没有免费的午餐,还需要继续提升RLHF数据集的质量,也要接受模型能力无法避免的损失(程度有轻重)。 diff --git a/README_en.md b/README_en.md index e5d4b69..6fa434f 100644 --- a/README_en.md +++ b/README_en.md @@ -531,13 +531,13 @@ better with the scaling law for small models. ### Trained Model Weights -[baidu](https://pan.baidu.com/s/1KUfSzEkSXYbCCBj0Pw-9fA?pwd=6666) +[🔗Baidu Netdisk](https://pan.baidu.com/s/1KUfSzEkSXYbCCBj0Pw-9fA?pwd=6666) -| Model Name | params | Config | pretrain_model | single_sft_model | multi_sft_model | rl_model | -|-------------------|--------|-----------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|----------| -| minimind-v1-small | 26M | d_model=512
n_layers=8 | [URL](https://pan.baidu.com/s/1wP_cAIc8cgaJ6CxUmR9ECQ?pwd=6666) | [URL](https://pan.baidu.com/s/1_COe0FQRDmeapSsvArahCA?pwd=6666) | [URL](https://pan.baidu.com/s/1GsGsWSL0Dckl0YPRXiBIFQ?pwd=6666) | | [URL](https://pan.baidu.com/s/1C_dOCzNxr_XF3Qk3pkdrwg?pwd=6666) | -| minimind-v1-moe | 4×26M | d_model=512
n_layers=8 | [URL](https://pan.baidu.com/s/1IZdkzPRhbZ_bSsRL8vInjg?pwd=6666) | [URL](https://pan.baidu.com/s/1tqB-GMvuiGQBvEl-yZ-oBw?pwd=6666) | [URL](https://pan.baidu.com/s/1GHJ2T4904EcT1u8l1rVqtg?pwd=6666) | | - | -| minimind-v1 | 108M | d_model=768
n_layers=16 | [URL](https://pan.baidu.com/s/1B60jYo4T8OmJI0ooqsixaA?pwd=6666) | [URL](https://pan.baidu.com/s/1p713loS7EfwHQf3G9eYI3Q?pwd=6666) | [URL](https://pan.baidu.com/s/12iHGpAs6R0kqsOnGtgK6vQ?pwd=6666) | | [URL](https://pan.baidu.com/s/1vmUrir-UuucqBftqNPI4ng?pwd=6666) | +| Model Name | params | Config | pretrain_model | single_sft_model | multi_sft_model | rl_model | +|-------------------|--------|-----------------------------|------------------------|------------------------------------|-----------------------------------|--------------| +| minimind-v1-small | 26M | d_model=512
n_layers=8 | `pretrain_512.pth` | `single_chat/full_sft_512.pth` | `multi_chat/full_sft_512.pth` | `rl_512.pth` | +| minimind-v1-moe | 4×26M | d_model=512
n_layers=8 | `pretrain_512_moe.pth` | `single_chat/full_sft_512_moe.pth` | `multi_chat/full_sft_512_moe.pth` | - | +| minimind-v1 | 108M | d_model=768
n_layers=16 | `pretrain_768.pth` | `single_chat/full_sft_768.pth` | `multi_chat/full_sft_768.pth` | `rl_768.pth` | ---