update readme

This commit is contained in:
gongjy 2024-10-08 23:40:29 +08:00
parent 000b0a496b
commit 772834148e
4 changed files with 20 additions and 30 deletions

View File

@ -35,11 +35,16 @@
---
<div align="center">
https://github.com/user-attachments/assets/88b98128-636e-43bc-a419-b1b1403c2055
![](./images/minimind-demo.gif)
[Bilibili视频链接](https://www.bilibili.com/video/BV12dHPeqE72/?share_source=copy_web&vd_source=670c2504f88726f8cf4a21ef6147c0e8)
[ModelScope在线测试](https://www.modelscope.cn/studios/gongjy/minimind) | [Bilibili视频链接](https://www.bilibili.com/video/BV12dHPeqE72/?share_source=copy_web&vd_source=670c2504f88726f8cf4a21ef6147c0e8)
---
</div>
@ -116,7 +121,7 @@ https://github.com/user-attachments/assets/88b98128-636e-43bc-a419-b1b1403c2055
- 项目已部署至ModelScope创空间可以在此网站上体验
- [ModelScope在线体验](https://www.modelscope.cn/studios/gongjy/minimind)
- [🔗ModelScope在线体验🔗](https://www.modelscope.cn/studios/gongjy/minimind)
</details>
@ -175,16 +180,6 @@ python 2-eval.py
streamlit run fast_inference.py
```
![](./images/streamlit.png)
<div align="center">
项目已部署至ModelScope创空间可以在此网站上体验
[ModelScope在线体验](https://www.modelscope.cn/studios/gongjy/minimind)
</div>
# 📌 Quick Start Train
@ -198,7 +193,7 @@ streamlit run fast_inference.py
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
```
```python
```text
# 测试torch是否可用cuda
import torch
print(torch.cuda.is_available())

View File

@ -43,12 +43,15 @@
<div align="center">
https://github.com/user-attachments/assets/88b98128-636e-43bc-a419-b1b1403c2055
![](./images/minimind-demo.gif)
[Bilibili Video](https://www.bilibili.com/video/BV12dHPeqE72/?share_source=copy_web&vd_source=670c2504f88726f8cf4a21ef6147c0e8)
[ModelScope Online Testing](https://www.modelscope.cn/studios/gongjy/minimind) | [Bilibili Video Link](https://www.bilibili.com/video/BV12dHPeqE72/?share_source=copy_web&vd_source=670c2504f88726f8cf4a21ef6147c0e8)
---
</div>
# 📌 Introduction
In the field of large language models (LLMs) such as GPT, LLaMA, GLM, etc., while their performance is impressive, the
@ -187,18 +190,6 @@ or you can run streamlit, launch a web page to chat with minimind-v1
streamlit run fast_inference.py
```
![](./images/streamlit.png)
<div align="center">
The project has been deployed to ModelScope makerspace, where you can experience:
[ModelScope Online](https://www.modelscope.cn/studios/gongjy/minimind)
</div>
# 📌 Quick Start Train
* 0.Clone the project code
@ -213,7 +204,7 @@ The project has been deployed to ModelScope makerspace, where you can experience
pip install -r requirements.txt
```
```python
```text
# Test if torch can use CUDA
import torch
print(torch.cuda.is_available())

BIN
images/minimind-demo.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.2 MiB

View File

@ -27,11 +27,15 @@ class RMSNorm(torch.nn.Module):
return output * self.weight
def precompute_pos_cis(dim: int, end: int, theta: float = 10000.0):
def precompute_pos_cis(dim: int, end: int, theta: float = 10000.0, train_len: int = 512):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
# # 计算缩放因子
# scale = train_len / end
# # 缩放旋转嵌入实现线性的长度外推注释掉不用是因为小模型依赖pos_cis拟合严重直接做线性外推效果并不好
# pos_cis = pos_cis * scale
return pos_cis