diff --git a/README.md b/README.md
index 5e74d40..88fba40 100644
--- a/README.md
+++ b/README.md
@@ -35,11 +35,16 @@
---
+
+
+
-https://github.com/user-attachments/assets/88b98128-636e-43bc-a419-b1b1403c2055
+
-[Bilibili视频链接](https://www.bilibili.com/video/BV12dHPeqE72/?share_source=copy_web&vd_source=670c2504f88726f8cf4a21ef6147c0e8)
+[ModelScope在线测试](https://www.modelscope.cn/studios/gongjy/minimind) | [Bilibili视频链接](https://www.bilibili.com/video/BV12dHPeqE72/?share_source=copy_web&vd_source=670c2504f88726f8cf4a21ef6147c0e8)
+
+---
@@ -116,7 +121,7 @@ https://github.com/user-attachments/assets/88b98128-636e-43bc-a419-b1b1403c2055
- 项目已部署至ModelScope创空间,可以在此网站上体验:
-- [ModelScope在线体验](https://www.modelscope.cn/studios/gongjy/minimind)
+- [🔗ModelScope在线体验🔗](https://www.modelscope.cn/studios/gongjy/minimind)
@@ -175,16 +180,6 @@ python 2-eval.py
streamlit run fast_inference.py
```
-
-
-
-
-项目已部署至ModelScope创空间,可以在此网站上体验:
-
-[ModelScope在线体验](https://www.modelscope.cn/studios/gongjy/minimind)
-
-
-
# 📌 Quick Start Train
@@ -198,7 +193,7 @@ streamlit run fast_inference.py
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
```
- ```python
+ ```text
# 测试torch是否可用cuda
import torch
print(torch.cuda.is_available())
diff --git a/README_en.md b/README_en.md
index 72210e8..c466cbe 100644
--- a/README_en.md
+++ b/README_en.md
@@ -43,12 +43,15 @@
-https://github.com/user-attachments/assets/88b98128-636e-43bc-a419-b1b1403c2055
+
-[Bilibili Video](https://www.bilibili.com/video/BV12dHPeqE72/?share_source=copy_web&vd_source=670c2504f88726f8cf4a21ef6147c0e8)
+[ModelScope Online Testing](https://www.modelscope.cn/studios/gongjy/minimind) | [Bilibili Video Link](https://www.bilibili.com/video/BV12dHPeqE72/?share_source=copy_web&vd_source=670c2504f88726f8cf4a21ef6147c0e8)
+
+---
+
# 📌 Introduction
In the field of large language models (LLMs) such as GPT, LLaMA, GLM, etc., while their performance is impressive, the
@@ -187,18 +190,6 @@ or you can run streamlit, launch a web page to chat with minimind-v1
streamlit run fast_inference.py
```
-
-
-
-
-
-The project has been deployed to ModelScope makerspace, where you can experience:
-
-[ModelScope Online](https://www.modelscope.cn/studios/gongjy/minimind)
-
-
-
-
# 📌 Quick Start Train
* 0.Clone the project code
@@ -213,7 +204,7 @@ The project has been deployed to ModelScope makerspace, where you can experience
pip install -r requirements.txt
```
- ```python
+ ```text
# Test if torch can use CUDA
import torch
print(torch.cuda.is_available())
diff --git a/images/minimind-demo.gif b/images/minimind-demo.gif
new file mode 100644
index 0000000..2459050
Binary files /dev/null and b/images/minimind-demo.gif differ
diff --git a/model/model.py b/model/model.py
index 20535fb..5976ad2 100644
--- a/model/model.py
+++ b/model/model.py
@@ -27,11 +27,15 @@ class RMSNorm(torch.nn.Module):
return output * self.weight
-def precompute_pos_cis(dim: int, end: int, theta: float = 10000.0):
+def precompute_pos_cis(dim: int, end: int, theta: float = 10000.0, train_len: int = 512):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
+ # # 计算缩放因子
+ # scale = train_len / end
+ # # 缩放旋转嵌入,实现线性的长度外推(注释掉不用是因为小模型依赖pos_cis拟合严重,直接做线性外推效果并不好)
+ # pos_cis = pos_cis * scale
return pos_cis