update fast_inference

This commit is contained in:
gongjy 2024-10-30 15:26:28 +08:00
parent db39571493
commit 7c67ba0b92

View File

@ -1,19 +1,16 @@
import json
import random
import numpy as np
import streamlit as st
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
st.set_page_config(page_title="minimind-v1(108M)")
st.title("minimind-v1(108M)")
st.set_page_config(page_title="MiniMind-V1")
st.title("MiniMind-V1")
model_id = "minimind-v1"
model_id = "./minimind-v1"
# -----------------------------------------------------------------------------
temperature = 0.7
top_k = 8
max_seq_len = 1 * 1024
# -----------------------------------------------------------------------------
@st.cache_resource
def load_model_tokenizer():
@ -33,28 +30,41 @@ def load_model_tokenizer():
def clear_chat_messages():
del st.session_state.messages
del st.session_state.chat_messages
def init_chat_messages():
with st.chat_message("assistant", avatar='🤖'):
st.markdown("您好我是由JingyaoGong创造的MiniMind很高兴为您服务😄")
st.markdown("我是由JingyaoGong创造的MiniMind很高兴为您服务😄 \n"
"所有AI生成内容的准确性和立场无法保证不代表我们的态度或观点。")
if "messages" in st.session_state:
for message in st.session_state.messages:
avatar = "🧑‍💻" if message["role"] == "user" else "🤖"
avatar = "🫡" if message["role"] == "user" else "🤖"
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
else:
st.session_state.messages = []
st.session_state.chat_messages = []
return st.session_state.messages
# max_new_tokens = st.sidebar.slider("max_new_tokens", 0, 1024, 512, step=1)
# top_p = st.sidebar.slider("top_p", 0.0, 1.0, 0.8, step=0.01)
# top_k = st.sidebar.slider("top_k", 0, 100, 0, step=1)
# temperature = st.sidebar.slider("temperature", 0.0, 2.0, 1.0, step=0.01)
# do_sample = st.sidebar.checkbox("do_sample", value=False)
st.sidebar.title("设定调整")
st.session_state.history_chat_num = st.sidebar.slider("携带历史对话条数", 0, 6, 0, step=2)
st.session_state.max_new_tokens = st.sidebar.slider("最大输入/生成长度", 256, 768, 512, step=1)
st.session_state.top_k = st.sidebar.slider("top_k", 0, 16, 14, step=1)
st.session_state.temperature = st.sidebar.slider("temperature", 0.3, 1.3, 0.5, step=0.01)
def setup_seed(seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def main():
@ -65,32 +75,30 @@ def main():
with st.chat_message("user", avatar='🧑‍💻'):
st.markdown(prompt)
messages.append({"role": "user", "content": prompt})
st.session_state.chat_messages.append({"role": "user", "content": '请问,' + prompt + ''})
with st.chat_message("assistant", avatar='🤖'):
placeholder = st.empty()
# Generate a random seed
random_seed = random.randint(0, 2 ** 32 - 1)
setup_seed(random_seed)
chat_messages = []
chat_messages.append({"role": "user", "content": '请问,' + prompt})
# print(messages)
new_prompt = tokenizer.apply_chat_template(
chat_messages,
st.session_state.chat_messages[-(st.session_state.history_chat_num + 1):],
tokenize=False,
add_generation_prompt=True
)[-(max_seq_len - 1):]
)[-(st.session_state.max_new_tokens - 1):]
x = tokenizer(new_prompt).data['input_ids']
x = (torch.tensor(x, dtype=torch.long)[None, ...])
response = ''
with torch.no_grad():
res_y = model.generate(x, tokenizer.eos_token_id, max_new_tokens=max_seq_len, temperature=temperature,
top_k=top_k, stream=True)
res_y = model.generate(x, tokenizer.eos_token_id, max_new_tokens=st.session_state.max_new_tokens,
temperature=st.session_state.temperature,
top_k=st.session_state.top_k, stream=True)
try:
y = next(res_y)
except StopIteration:
return
history_idx = 0
while y != None:
answer = tokenizer.decode(y[0].tolist())
if answer and answer[-1] == '<EFBFBD>':
@ -99,7 +107,6 @@ def main():
except:
break
continue
# print(answer)
if not len(answer):
try:
y = next(res_y)
@ -107,17 +114,14 @@ def main():
break
continue
placeholder.markdown(answer)
response = answer
try:
y = next(res_y)
except:
break
# if contain_history_chat:
# assistant_answer = answer.replace(new_prompt, "")
# messages.append({"role": "assistant", "content": assistant_answer})
messages.append({"role": "assistant", "content": response})
assistant_answer = answer.replace(new_prompt, "")
messages.append({"role": "assistant", "content": assistant_answer})
st.session_state.chat_messages.append({"role": "assistant", "content": assistant_answer})
st.button("清空对话", on_click=clear_chat_messages)