diff --git a/fast_infenence.py b/fast_inference.py
similarity index 57%
rename from fast_infenence.py
rename to fast_inference.py
index 5ab4eea..ee3a119 100644
--- a/fast_infenence.py
+++ b/fast_inference.py
@@ -1,19 +1,16 @@
 import json
+import random
+import numpy as np
 import streamlit as st
 import torch
 from transformers import AutoModelForCausalLM, AutoTokenizer
 from transformers.generation.utils import GenerationConfig
 
-st.set_page_config(page_title="minimind-v1(108M)")
-st.title("minimind-v1(108M)")
+st.set_page_config(page_title="MiniMind-V1")
+st.title("MiniMind-V1")
 
-model_id = "minimind-v1"
+model_id = "./minimind-v1"
 
-# -----------------------------------------------------------------------------
-temperature = 0.7
-top_k = 8
-max_seq_len = 1 * 1024
-# -----------------------------------------------------------------------------
 
 @st.cache_resource
 def load_model_tokenizer():
@@ -33,28 +30,41 @@ def load_model_tokenizer():
 
 def clear_chat_messages():
     del st.session_state.messages
+    del st.session_state.chat_messages
 
 
 def init_chat_messages():
     with st.chat_message("assistant", avatar='🤖'):
-        st.markdown("您好,我是由JingyaoGong创造的MiniMind,很高兴为您服务😄")
+        st.markdown("我是由JingyaoGong创造的MiniMind,很高兴为您服务😄  \n"
+                    "注:所有AI生成内容的准确性和立场无法保证,不代表我们的态度或观点。")
 
     if "messages" in st.session_state:
         for message in st.session_state.messages:
-            avatar = "🧑‍💻" if message["role"] == "user" else "🤖"
+            avatar = "🫡" if message["role"] == "user" else "🤖"
             with st.chat_message(message["role"], avatar=avatar):
                 st.markdown(message["content"])
     else:
         st.session_state.messages = []
+        st.session_state.chat_messages = []
 
     return st.session_state.messages
 
 
-# max_new_tokens = st.sidebar.slider("max_new_tokens", 0, 1024, 512, step=1)
-# top_p = st.sidebar.slider("top_p", 0.0, 1.0, 0.8, step=0.01)
-# top_k = st.sidebar.slider("top_k", 0, 100, 0, step=1)
-# temperature = st.sidebar.slider("temperature", 0.0, 2.0, 1.0, step=0.01)
-# do_sample = st.sidebar.checkbox("do_sample", value=False)
+st.sidebar.title("设定调整")
+st.session_state.history_chat_num = st.sidebar.slider("携带历史对话条数", 0, 6, 0, step=2)
+st.session_state.max_new_tokens = st.sidebar.slider("最大输入/生成长度", 256, 768, 512, step=1)
+st.session_state.top_k = st.sidebar.slider("top_k", 0, 16, 14, step=1)
+st.session_state.temperature = st.sidebar.slider("temperature", 0.3, 1.3, 0.5, step=0.01)
+
+
+def setup_seed(seed):
+    random.seed(seed)
+    np.random.seed(seed)
+    torch.manual_seed(seed)
+    torch.cuda.manual_seed(seed)
+    torch.cuda.manual_seed_all(seed)
+    torch.backends.cudnn.deterministic = True
+    torch.backends.cudnn.benchmark = False
 
 
 def main():
@@ -65,32 +75,30 @@ def main():
         with st.chat_message("user", avatar='🧑‍💻'):
             st.markdown(prompt)
             messages.append({"role": "user", "content": prompt})
+            st.session_state.chat_messages.append({"role": "user", "content": '请问,' + prompt + '?'})
         with st.chat_message("assistant", avatar='🤖'):
             placeholder = st.empty()
+            # Generate a random seed
+            random_seed = random.randint(0, 2 ** 32 - 1)
+            setup_seed(random_seed)
 
-            chat_messages = []
-            chat_messages.append({"role": "user", "content": '请问,' + prompt})
-            # print(messages)
             new_prompt = tokenizer.apply_chat_template(
-                chat_messages,
+                st.session_state.chat_messages[-(st.session_state.history_chat_num + 1):],
                 tokenize=False,
                 add_generation_prompt=True
-            )[-(max_seq_len - 1):]
+            )[-(st.session_state.max_new_tokens - 1):]
 
             x = tokenizer(new_prompt).data['input_ids']
             x = (torch.tensor(x, dtype=torch.long)[None, ...])
-
-            response = ''
-
             with torch.no_grad():
-                res_y = model.generate(x, tokenizer.eos_token_id, max_new_tokens=max_seq_len, temperature=temperature,
-                                       top_k=top_k, stream=True)
+                res_y = model.generate(x, tokenizer.eos_token_id, max_new_tokens=st.session_state.max_new_tokens,
+                                       temperature=st.session_state.temperature,
+                                       top_k=st.session_state.top_k, stream=True)
                 try:
                     y = next(res_y)
                 except StopIteration:
                     return
 
-                history_idx = 0
                 while y != None:
                     answer = tokenizer.decode(y[0].tolist())
                     if answer and answer[-1] == '�':
@@ -99,7 +107,6 @@ def main():
                         except:
                             break
                         continue
-                    # print(answer)
                     if not len(answer):
                         try:
                             y = next(res_y)
@@ -107,17 +114,14 @@ def main():
                             break
                         continue
                     placeholder.markdown(answer)
-                    response = answer
                     try:
                         y = next(res_y)
                     except:
                         break
 
-            # if contain_history_chat:
-            #     assistant_answer = answer.replace(new_prompt, "")
-            #     messages.append({"role": "assistant", "content": assistant_answer})
-
-        messages.append({"role": "assistant", "content": response})
+            assistant_answer = answer.replace(new_prompt, "")
+            messages.append({"role": "assistant", "content": assistant_answer})
+            st.session_state.chat_messages.append({"role": "assistant", "content": assistant_answer})
 
     st.button("清空对话", on_click=clear_chat_messages)