update minimind-v1 update readme

This commit is contained in:
gongjy 2024-09-01 23:45:48 +08:00
parent c8f957db29
commit 7e9621fe00

128
fast_infenence.py Normal file
View File

@ -0,0 +1,128 @@
import json
import streamlit as st
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
st.set_page_config(page_title="MiniMind-V1 Demo(无历史上文)")
st.title("MiniMind-V1 Demo(无历史上文)")
model_id = "minimind-v1"
# -----------------------------------------------------------------------------
temperature = 0.7
top_k = 8
max_seq_len = 1 * 1024
# -----------------------------------------------------------------------------
@st.cache_resource
def load_model_tokenizer():
model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
model_id,
use_fast=False,
trust_remote_code=True
)
model = model.eval()
generation_config = GenerationConfig.from_pretrained(model_id)
return model, tokenizer, generation_config
def clear_chat_messages():
del st.session_state.messages
def init_chat_messages():
with st.chat_message("assistant", avatar='🤖'):
st.markdown("您好我是由Joya开发的MiniMind很高兴为您服务😄")
if "messages" in st.session_state:
for message in st.session_state.messages:
avatar = "🧑‍💻" if message["role"] == "user" else "🤖"
with st.chat_message(message["role"], avatar=avatar):
st.markdown(message["content"])
else:
st.session_state.messages = []
return st.session_state.messages
# max_new_tokens = st.sidebar.slider("max_new_tokens", 0, 1024, 512, step=1)
# top_p = st.sidebar.slider("top_p", 0.0, 1.0, 0.8, step=0.01)
# top_k = st.sidebar.slider("top_k", 0, 100, 0, step=1)
# temperature = st.sidebar.slider("temperature", 0.0, 2.0, 1.0, step=0.01)
# do_sample = st.sidebar.checkbox("do_sample", value=False)
def main():
model, tokenizer, generation_config = load_model_tokenizer()
messages = init_chat_messages()
if prompt := st.chat_input("Shift + Enter 换行, Enter 发送"):
with st.chat_message("user", avatar='🧑‍💻'):
st.markdown(prompt)
messages.append({"role": "user", "content": prompt})
with st.chat_message("assistant", avatar='🤖'):
placeholder = st.empty()
chat_messages = []
chat_messages.append({"role": "user", "content": prompt})
# print(messages)
new_prompt = tokenizer.apply_chat_template(
chat_messages,
tokenize=False,
add_generation_prompt=True
)[-(max_seq_len - 1):]
x = tokenizer(new_prompt).data['input_ids']
x = (torch.tensor(x, dtype=torch.long)[None, ...])
response = ''
with torch.no_grad():
res_y = model.generate(x, tokenizer.eos_token_id, max_new_tokens=max_seq_len, temperature=temperature,
top_k=top_k, stream=True)
try:
y = next(res_y)
except StopIteration:
return
history_idx = 0
while y != None:
answer = tokenizer.decode(y[0].tolist())
if answer and answer[-1] == '<EFBFBD>':
try:
y = next(res_y)
except:
break
continue
# print(answer)
if not len(answer):
try:
y = next(res_y)
except:
break
continue
placeholder.markdown(answer)
response = answer
try:
y = next(res_y)
except:
break
# if contain_history_chat:
# assistant_answer = answer.replace(new_prompt, "")
# messages.append({"role": "assistant", "content": assistant_answer})
messages.append({"role": "assistant", "content": response})
# print("messages: ", json.dumps(response, ensure_ascii=False), flush=True)
st.button("清空对话", on_click=clear_chat_messages)
if __name__ == "__main__":
main()