检查速度慢的原因

This commit is contained in:
Jax922 2025-05-12 17:46:18 +08:00
parent 48f0018432
commit 803d1f1b72
2 changed files with 155 additions and 16 deletions

View File

@ -10,7 +10,7 @@ from sklearn.model_selection import train_test_split
import os import os
import ast import ast
os.environ["TOKENIZERS_PARALLELISM"] = "false" os.environ["TOKENIZERS_PARALLELISM"] = "true"
class PretrainDataset(Dataset): class PretrainDataset(Dataset):

View File

@ -42,18 +42,64 @@ def train_epoch(epoch, wandb):
start_time = time.time() start_time = time.time()
# 在函数开始处定义moe_path避免在异常处理中引用未定义变量 # 在函数开始处定义moe_path避免在异常处理中引用未定义变量
moe_path = '_moe' if lm_config.use_moe else '' moe_path = '_moe' if lm_config.use_moe else ''
for step, (X, Y, loss_mask) in enumerate(train_loader):
# 添加CUDA事件来分析性能
if args.profile and (not ddp or dist.get_rank() == 0):
data_start = torch.cuda.Event(enable_timing=True)
data_end = torch.cuda.Event(enable_timing=True)
forward_start = torch.cuda.Event(enable_timing=True)
forward_end = torch.cuda.Event(enable_timing=True)
backward_start = torch.cuda.Event(enable_timing=True)
backward_end = torch.cuda.Event(enable_timing=True)
optimizer_start = torch.cuda.Event(enable_timing=True)
optimizer_end = torch.cuda.Event(enable_timing=True)
# 预取数据
prefetch_factor = 2 # 预取的批次数
data_iter = iter(train_loader)
prefetch_batches = []
# 预取初始批次
for _ in range(min(prefetch_factor, len(train_loader))):
try: try:
# 将数据加载到设备上 batch = next(data_iter)
X = X.to(args.device) prefetch_batches.append([t.to(args.device, non_blocking=True) for t in batch])
Y = Y.to(args.device) except StopIteration:
loss_mask = loss_mask.to(args.device) break
for step in range(len(train_loader)):
try:
# 计时数据加载
if args.profile and (not ddp or dist.get_rank() == 0):
data_start.record()
# 使用预取的数据
if prefetch_batches:
X, Y, loss_mask = prefetch_batches.pop(0)
else:
# 如果预取队列为空,直接加载
X, Y, loss_mask = [t.to(args.device) for t in next(data_iter)]
# 异步预取下一批数据
if step + prefetch_factor < len(train_loader):
try:
batch = next(data_iter)
prefetch_batches.append([t.to(args.device, non_blocking=True) for t in batch])
except StopIteration:
pass
if args.profile and (not ddp or dist.get_rank() == 0):
data_end.record()
# 更新学习率 # 更新学习率
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch, args.learning_rate) lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch, args.learning_rate)
for param_group in optimizer.param_groups: for param_group in optimizer.param_groups:
param_group['lr'] = lr param_group['lr'] = lr
# 计时前向传播
if args.profile and (not ddp or dist.get_rank() == 0):
forward_start.record()
with ctx: with ctx:
res = model(X) res = model(X)
loss = loss_fct( loss = loss_fct(
@ -77,6 +123,10 @@ def train_epoch(epoch, wandb):
# 如果出错,不添加辅助损失 # 如果出错,不添加辅助损失
loss = loss / args.accumulation_steps loss = loss / args.accumulation_steps
if args.profile and (not ddp or dist.get_rank() == 0):
forward_end.record()
backward_start.record()
# Print data types for debugging # Print data types for debugging
if step == 0 and (not ddp or dist.get_rank() == 0): # Print only for the first step of the first epoch on the main process if step == 0 and (not ddp or dist.get_rank() == 0): # Print only for the first step of the first epoch on the main process
Logger("---- Data Type Check ----") Logger("---- Data Type Check ----")
@ -89,9 +139,24 @@ def train_epoch(epoch, wandb):
Logger(f"loss.dtype: {loss.dtype}") Logger(f"loss.dtype: {loss.dtype}")
Logger("-------------------------") Logger("-------------------------")
# 反向传播
scaler.scale(loss).backward() scaler.scale(loss).backward()
if args.profile and (not ddp or dist.get_rank() == 0):
backward_end.record()
# 在每一步都进行性能分析,而不仅仅是在梯度累积完成时
if (step + 1) % args.profile_interval == 0:
# 记录优化器时间(如果是梯度累积步骤)
if (step + 1) % args.accumulation_steps == 0:
optimizer_start.record()
# 优化器步骤
if (step + 1) % args.accumulation_steps == 0: if (step + 1) % args.accumulation_steps == 0:
if args.profile and (not ddp or dist.get_rank() == 0):
if (step + 1) % args.profile_interval != 0:
optimizer_start.record()
scaler.unscale_(optimizer) scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip) torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
@ -100,6 +165,40 @@ def train_epoch(epoch, wandb):
optimizer.zero_grad(set_to_none=True) optimizer.zero_grad(set_to_none=True)
if args.profile and (not ddp or dist.get_rank() == 0):
optimizer_end.record()
# 性能分析输出每profile_interval步
if args.profile and (not ddp or dist.get_rank() == 0) and (step + 1) % args.profile_interval == 0:
# 同步CUDA事件以获取准确的计时
torch.cuda.synchronize()
# 计算各阶段耗时
data_time = data_start.elapsed_time(data_end)
forward_time = forward_start.elapsed_time(forward_end)
backward_time = backward_start.elapsed_time(backward_end)
# 只有在梯度累积步骤完成时才有优化器时间
if (step + 1) % args.accumulation_steps == 0:
optimizer_time = optimizer_start.elapsed_time(optimizer_end)
total_compute_time = forward_time + backward_time + optimizer_time
Logger(f"性能分析 - 步骤 {step+1}:")
Logger(f" 数据加载时间: {data_time:.2f} ms")
Logger(f" 前向传播时间: {forward_time:.2f} ms")
Logger(f" 反向传播时间: {backward_time:.2f} ms")
Logger(f" 优化器时间: {optimizer_time:.2f} ms")
Logger(f" 总计算时间: {total_compute_time:.2f} ms")
Logger(f" 计算/数据比例: {total_compute_time / data_time:.2f}")
else:
# 非梯度累积步骤,没有优化器时间
total_compute_time = forward_time + backward_time
Logger(f"性能分析 - 步骤 {step+1} (梯度累积中):")
Logger(f" 数据加载时间: {data_time:.2f} ms")
Logger(f" 前向传播时间: {forward_time:.2f} ms")
Logger(f" 反向传播时间: {backward_time:.2f} ms")
Logger(f" 总计算时间: {total_compute_time:.2f} ms")
Logger(f" 计算/数据比例: {total_compute_time / data_time:.2f}")
# 打印日志 # 打印日志
if step % args.log_interval == 0: if step % args.log_interval == 0:
spend_time = time.time() - start_time spend_time = time.time() - start_time
@ -114,9 +213,37 @@ def train_epoch(epoch, wandb):
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60)) spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
if (wandb is not None) and (not ddp or dist.get_rank() == 0): if (wandb is not None) and (not ddp or dist.get_rank() == 0):
wandb.log({"loss": loss.item() * args.accumulation_steps, log_dict = {
"lr": optimizer.param_groups[-1]['lr'], "loss": loss.item() * args.accumulation_steps,
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60}) "lr": optimizer.param_groups[-1]['lr'],
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60
}
# 如果启用了性能分析,也记录性能指标
if args.profile and (step + 1) % args.profile_interval == 0:
# 基本性能指标
perf_dict = {
"data_time_ms": data_time,
"forward_time_ms": forward_time,
"backward_time_ms": backward_time
}
# 只有在梯度累积步骤完成时才有优化器时间
if (step + 1) % args.accumulation_steps == 0:
total_compute_time = forward_time + backward_time + optimizer_time
perf_dict.update({
"optimizer_time_ms": optimizer_time,
"compute_time_ms": total_compute_time
})
else:
total_compute_time = forward_time + backward_time
perf_dict.update({
"compute_time_ms": total_compute_time
})
log_dict.update(perf_dict)
wandb.log(log_dict)
# 保存模型 # 保存模型
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0): if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
@ -194,28 +321,33 @@ if __name__ == "__main__":
parser.add_argument("--out_dir", type=str, default="out") parser.add_argument("--out_dir", type=str, default="out")
# 若要以最快速度实现zero则epochs设置为1轮否则应当利用有限的数据训练2~6个epochs。 # 若要以最快速度实现zero则epochs设置为1轮否则应当利用有限的数据训练2~6个epochs。
parser.add_argument("--epochs", type=int, default=3) parser.add_argument("--epochs", type=int, default=3)
parser.add_argument("--batch_size", type=int, default=8) parser.add_argument("--batch_size", type=int, default=24)
parser.add_argument("--learning_rate", type=float, default=2e-4) parser.add_argument("--learning_rate", type=float, default=2e-4)
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu") #如果GPU可用则使用GPU否则使用CPU。 parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu") #如果GPU可用则使用GPU否则使用CPU。
parser.add_argument("--dtype", type=str, default="bfloat16") parser.add_argument("--dtype", type=str, default="bfloat16")
parser.add_argument("--use_wandb", default=True, action="store_true") parser.add_argument("--use_wandb", default=True, action="store_true")
parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain") parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain")
parser.add_argument("--num_workers", type=int, default=8) parser.add_argument("--num_workers", type=int, default=48)
parser.add_argument("--ddp", action="store_true") parser.add_argument("--ddp", action="store_true")
parser.add_argument("--accumulation_steps", type=int, default=64) #梯度累积步数,用于控制梯度更新频率。 parser.add_argument("--accumulation_steps", type=int, default=32) #梯度累积步数,用于控制梯度更新频率。
parser.add_argument("--grad_clip", type=float, default=1.0) #梯度裁剪阈值,用于防止梯度爆炸。 parser.add_argument("--grad_clip", type=float, default=1.0) #梯度裁剪阈值,用于防止梯度爆炸。
parser.add_argument("--warmup_iters", type=int, default=0) #预热迭代次数,用于控制学习率预热过程。 parser.add_argument("--warmup_iters", type=int, default=0) #预热迭代次数,用于控制学习率预热过程。
parser.add_argument("--log_interval", type=int, default=100) #日志打印间隔,用于控制日志打印的频率。 parser.add_argument("--log_interval", type=int, default=100) #日志打印间隔,用于控制日志打印的频率。
parser.add_argument("--save_interval", type=int, default=10000) #模型保存间隔,用于控制模型保存的频率。 parser.add_argument("--save_interval", type=int, default=10000) #模型保存间隔,用于控制模型保存的频率。
parser.add_argument('--local_rank', type=int, default=-1) #本地进程编号,用于分布式训练。 parser.add_argument('--local_rank', type=int, default=-1) #本地进程编号,用于分布式训练。
parser.add_argument('--dim', default=2048, type=int) #模型维度,用于控制模型的大小。 parser.add_argument('--dim', default=1024, type=int) #模型维度,用于控制模型的大小。
parser.add_argument('--n_layers', default=32, type=int) #层数,用于控制模型层数。 parser.add_argument('--n_layers', default=32, type=int) #层数,用于控制模型层数。
parser.add_argument('--max_seq_len', default=1024, type=int) #最大序列长度,用于控制输入序列的最大长度。 parser.add_argument('--max_seq_len', default=1024, type=int) #最大序列长度,用于控制输入序列的最大长度。
parser.add_argument('--use_moe', default=False, type=bool) #是否使用MOE用于控制是否使用MOE。 parser.add_argument('--use_moe', default=False, type=bool) #是否使用MOE用于控制是否使用MOE。
parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能使用固定值1e-4替代") #禁用数据库功能,启用特殊模式 parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能使用固定值1e-4替代") #禁用数据库功能,启用特殊模式
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") #数据路径,用于控制数据集的路径。 parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") #数据路径,用于控制数据集的路径。
parser.add_argument("--pretrained_embedding_path", type=str, default=None, help="Path to pretrained token embedding weights (.pth file)") parser.add_argument("--pretrained_embedding_path", type=str, default=None, help="Path to pretrained token embedding weights (.pth file)")
# 性能分析相关参数
parser.add_argument("--profile", action="store_true", default=True, help="启用性能分析")
parser.add_argument("--profile_interval", type=int, default=100, help="性能分析打印间隔(步数)")
args = parser.parse_args() args = parser.parse_args()
print(args)
lm_config = LMConfig( lm_config = LMConfig(
dim=args.dim, dim=args.dim,
@ -267,24 +399,31 @@ if __name__ == "__main__":
model, tokenizer = init_model(lm_config, args.pretrained_embedding_path) model, tokenizer = init_model(lm_config, args.pretrained_embedding_path)
train_ds = PretrainDataset(args.data_path, tokenizer, max_length=lm_config.max_seq_len) train_ds = PretrainDataset(args.data_path, tokenizer, max_length=lm_config.max_seq_len)
train_sampler = DistributedSampler(train_ds) if ddp else None train_sampler = DistributedSampler(train_ds) if ddp else None
# 优化DataLoader配置
train_loader = DataLoader( train_loader = DataLoader(
train_ds, train_ds,
batch_size=args.batch_size, batch_size=args.batch_size,
pin_memory=True, pin_memory=True,
pin_memory_device=f"cuda:{ddp_local_rank}" if ddp else "cuda:0", # 指定pin_memory设备
drop_last=False, drop_last=False,
shuffle=False, shuffle=False,
num_workers=args.num_workers, num_workers=args.num_workers,
sampler=train_sampler sampler=train_sampler,
persistent_workers=True if args.num_workers > 0 else False, # 保持worker进程活跃
prefetch_factor=2 if args.num_workers > 0 else None # 预取因子
) )
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16'])) # 只有在使用float16时才启用GradScalerbfloat16不需要
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype == 'float16'))
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate) optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)
if ddp: if ddp:
model._ddp_params_and_buffers_to_ignore = {"pos_cis"} model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
# 添加find_unused_parameters=True参数解决未使用参数的问题 # 保留find_unused_parameters=True参数因为模型中确实有未使用的参数
model = DistributedDataParallel(model, device_ids=[ddp_local_rank], find_unused_parameters=True) model = DistributedDataParallel(model, device_ids=[ddp_local_rank], find_unused_parameters=True)
# 暂时保留set_detect_anomaly以便调试
# 训练稳定后可以注释掉这行来提高速度
torch.autograd.set_detect_anomaly(True) torch.autograd.set_detect_anomaly(True)
iter_per_epoch = len(train_loader) iter_per_epoch = len(train_loader)
for epoch in range(args.epochs): for epoch in range(args.epochs):