add accumulation_grad for pretrain
This commit is contained in:
parent
8c18b324d0
commit
c404941677
@ -37,34 +37,30 @@ def get_lr(it, all):
|
||||
return min_lr + coeff * (learning_rate - min_lr)
|
||||
|
||||
|
||||
def train_epoch(epoch):
|
||||
def train_epoch(epoch, accumulation_steps=8):
|
||||
start_time = time.time()
|
||||
|
||||
for step, (X, Y) in enumerate(train_loader):
|
||||
X = X.to(device)
|
||||
Y = Y.to(device)
|
||||
|
||||
# 设置学习率
|
||||
lr = get_lr(epoch * iter_per_epoch + step, epochs * iter_per_epoch)
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group['lr'] = lr
|
||||
|
||||
# 前向传播和损失计算
|
||||
with ctx:
|
||||
out = model(X, Y)
|
||||
loss = out.last_loss
|
||||
loss = out.last_loss / accumulation_steps
|
||||
|
||||
# 反向传播
|
||||
scaler.scale(loss).backward()
|
||||
|
||||
# 梯度剪裁和更新参数
|
||||
scaler.unscale_(optimizer)
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
if (step + 1) % accumulation_steps == 0:
|
||||
scaler.unscale_(optimizer)
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
||||
|
||||
# 清零梯度
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
|
||||
if step % 100 == 0:
|
||||
spend_time = time.time() - start_time
|
||||
@ -74,7 +70,7 @@ def train_epoch(epoch):
|
||||
epochs,
|
||||
step,
|
||||
iter_per_epoch,
|
||||
loss.item(),
|
||||
loss.item() * accumulation_steps,
|
||||
optimizer.param_groups[-1]['lr'],
|
||||
spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60))
|
||||
|
||||
@ -134,7 +130,7 @@ if __name__ == "__main__":
|
||||
out_dir = 'out'
|
||||
epochs = 20
|
||||
batch_size = 64
|
||||
learning_rate = 1e-4
|
||||
learning_rate = 2e-4
|
||||
device = 'cuda:0'
|
||||
dtype = 'bfloat16'
|
||||
save_dir = os.path.join(out_dir)
|
||||
|
Loading…
x
Reference in New Issue
Block a user