对数据库进行了初始化

This commit is contained in:
iomgaa 2025-05-26 23:09:03 +08:00
parent c09cd63794
commit c96a9c35d5
4 changed files with 1218 additions and 271 deletions

4
.gitignore vendored
View File

@ -2,4 +2,6 @@
/dataset /dataset
/out /out
wandb/ wandb/
**/*.log **/*.log
models/sentence_transformers/
models/sentence_transformers_cache/

View File

@ -0,0 +1,97 @@
# TREx 数据集处理工具使用说明
这个工具支持两步骤处理 TREx 数据集:
1. **句子提取**:从 TREx 数据集提取三元组并转换为自然语言句子
2. **LLM 处理**:使用 ollama qwen3:4b 模型进行句子修正和重要性评分
## 安装依赖
```bash
pip install agno asyncio pydantic
```
确保已安装并启动 ollama并下载 qwen3:4b 模型:
```bash
ollama pull qwen3:4b
```
## 使用方法
### 1. 完整流程(两步骤连续执行)
```bash
python trex_to_sentences_simple.py --step all --input_dir dataset/TREx --max_files 2
```
### 2. 分步骤执行
#### 步骤1仅提取句子
```bash
python trex_to_sentences_simple.py --step extract --input_dir dataset/TREx --sentences_json my_sentences.json --max_files 2
```
#### 步骤2仅LLM处理
```bash
python trex_to_sentences_simple.py --step llm --sentences_json my_sentences.json --output_file final_output.txt
```
## 主要参数说明
- `--step`: 运行步骤
- `extract`: 仅提取句子
- `llm`: 仅LLM处理
- `all`: 完整流程(默认)
- `--input_dir`: TREx数据集目录默认`dataset/TREx`
- `--sentences_json`: 提取的句子JSON文件默认`extracted_sentences.json`
- `--output_file`: 最终输出文件(默认:`trex_sentences_enhanced.txt`
- `--max_files`: 最大处理文件数(用于测试)
- `--no_llm`: 禁用LLM处理
## 输出文件
**注意:所有输出文件都会自动保存在 `./output/` 目录中**
### 步骤1输出
- `output/extracted_sentences.json`: 提取的原始句子,包含元数据
### 步骤2输出
- `output/{output_file}.txt`: 修正后的句子文本文件
- `output/{output_file}.json`: 完整的处理结果(包含原句、修正句、评分)
- `output/{output_file}_sorted_by_importance.txt`: 按重要性评分排序的句子
### 检查点文件
- `output/{output_file}_checkpoint_{数量}.json`: 每2000条句子自动保存的检查点
## 检查点恢复机制
- 步骤2会自动检测已有的检查点文件`output/` 目录中)
- 只处理尚未处理的句子,避免重复工作
- 如果所有句子都已处理,会直接生成最终输出文件
## 示例工作流
```bash
# 1. 先提取句子(可以快速完成)
python trex_to_sentences_simple.py --step extract --max_files 5
# 2. 后续进行LLM处理耗时较长支持断点续传
python trex_to_sentences_simple.py --step llm
# 如果中途中断再次运行步骤2会自动从检查点恢复
python trex_to_sentences_simple.py --step llm
```
## 性能特点
- **并发处理**: 最大54个并发LLM请求
- **检查点保存**: 每2000条句子自动保存支持断点续传
- **进度显示**: 详细的处理进度和时间预估
- **错误处理**: LLM请求失败时使用原句子和默认评分
## 注意事项
1. 首次运行步骤2前必须先完成步骤1
2. 检查点文件会占用额外磁盘空间(每个都包含所有已处理数据)
3. LLM处理速度取决于模型性能和网络状况
4. 建议先用`--max_files`参数测试小批量数据

File diff suppressed because it is too large Load Diff

View File

@ -3,6 +3,7 @@ import os
os.environ["WANDB_MODE"] = "offline" # 或者使用 "dryrun" os.environ["WANDB_MODE"] = "offline" # 或者使用 "dryrun"
import platform import platform
import argparse import argparse
from tqdm import tqdm
import time import time
import math import math
import warnings import warnings
@ -18,8 +19,10 @@ from accelerate.utils import set_seed
from accelerate.utils import DeepSpeedPlugin from accelerate.utils import DeepSpeedPlugin
from accelerate.utils import DistributedDataParallelKwargs from accelerate.utils import DistributedDataParallelKwargs
from transformers import AutoTokenizer, get_cosine_schedule_with_warmup from transformers import AutoTokenizer, get_cosine_schedule_with_warmup
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from model.model import MiniMindLM from model.model import MiniMindLM, RMSNorm
from model.LMConfig import LMConfig from model.LMConfig import LMConfig
from model.dataset import PretrainDataset from model.dataset import PretrainDataset
@ -41,9 +44,40 @@ def get_lr(it, num_iters, learning_rate):
return learning_rate * 0.5 * (1.0 + math.cos(math.pi * it / num_iters)) return learning_rate * 0.5 * (1.0 + math.cos(math.pi * it / num_iters))
# 初始化模型函数 # 初始化模型函数
def init_model(lm_config, pretrained_embedding_path=None): def init_model(lm_config, pretrained_embedding_path=None, database_init_path=None, args=None):
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer') tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
model = MiniMindLM(lm_config) model = MiniMindLM(lm_config)
# 默认模型初始化
Logger("Performing default model initialization...")
# 初始化嵌入层权重
nn.init.normal_(model.tok_embeddings.weight, mean=0.0, std=0.02)
# 初始化输出层权重(如果不共享权重的话)
if not hasattr(model.tok_embeddings, 'weight') or model.output.weight is not model.tok_embeddings.weight:
nn.init.normal_(model.output.weight, mean=0.0, std=0.02)
# 初始化所有线性层
for name, module in model.named_modules():
if isinstance(module, nn.Linear):
# 使用Xavier/Glorot初始化
nn.init.xavier_uniform_(module.weight)
if module.bias is not None:
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
# 嵌入层使用正态分布初始化
nn.init.normal_(module.weight, mean=0.0, std=0.02)
elif isinstance(module, RMSNorm):
# RMSNorm的权重初始化为1
if hasattr(module, 'weight'):
nn.init.ones_(module.weight)
# 初始化位置编码相关参数
if hasattr(model.extract_db, 'keys'):
nn.init.normal_(model.extract_db.keys, mean=0.0, std=0.02)
Logger("Default model initialization completed")
# 如果提供了预训练的嵌入权重,加载它们 # 如果提供了预训练的嵌入权重,加载它们
if pretrained_embedding_path: if pretrained_embedding_path:
@ -51,7 +85,335 @@ def init_model(lm_config, pretrained_embedding_path=None):
pretrained_embeddings = torch.load(pretrained_embedding_path) pretrained_embeddings = torch.load(pretrained_embedding_path)
model.tok_embeddings.weight.data.copy_(pretrained_embeddings) model.tok_embeddings.weight.data.copy_(pretrained_embeddings)
model.output.weight.data.copy_(pretrained_embeddings) # 共享权重 model.output.weight.data.copy_(pretrained_embeddings) # 共享权重
if database_init_path:
import json
import numpy as np
from sentence_transformers import SentenceTransformer
import os
Logger(f"Loading database initialization data from {database_init_path}")
# 1. 加载JSON文件并转换为字典
with open(database_init_path, 'r', encoding='utf-8') as f:
database_data = json.load(f)
# 提取sentences列表
sentences_data = database_data.get('sentences', [])
Logger(f"Loaded {len(sentences_data)} sentences from database")
# 2. 按照importance_score进行排序从高到低
sorted_sentences = sorted(sentences_data, key=lambda x: x.get('importance_score', 0.0), reverse=True)
Logger(f"Sorted sentences by importance score (highest: {sorted_sentences[0].get('importance_score', 0.0)}, lowest: {sorted_sentences[-1].get('importance_score', 0.0)})")
# 3. 下载并初始化本地嵌入模型
embedding_model_name = "sentence-transformers/all-mpnet-base-v2" # 轻量级但效果好的模型
embedding_model_dir = "./models/sentence_transformers/models--sentence-transformers--all-mpnet-base-v2"
embedding_cache_dir = "./models/sentence_transformers/cache"
os.makedirs(embedding_cache_dir, exist_ok=True)
Logger(f"Loading embedding model: {embedding_model_name}")
try:
embedding_model = SentenceTransformer(embedding_model_dir, cache_folder=embedding_cache_dir)
Logger("Embedding model loaded successfully")
except Exception as e:
Logger(f"Failed to load embedding model: {e}")
Logger("Falling back to random embeddings")
embedding_model = None
# 4. 对每个corrected_sentence进行嵌入和token长度计算
Logger("Processing sentences for embeddings and token lengths...")
# 提取所有句子
sentences = [sentence_data.get('corrected_sentence', '') for sentence_data in sorted_sentences]
# 批量计算token长度
Logger("Computing token lengths...")
token_lengths = []
for sentence in sentences:
tokens = tokenizer.encode(sentence, add_special_tokens=False)
token_lengths.append(len(tokens))
# 批量计算嵌入 - 大幅提升速度
Logger("Computing embeddings in batches...")
embeddings_list = []
batch_size = 256 # 可以根据GPU内存调整
if embedding_model is not None:
try:
for i in range(0, len(sentences), batch_size):
batch_sentences = sentences[i:i+batch_size]
batch_embeddings = embedding_model.encode(
batch_sentences,
convert_to_tensor=False,
show_progress_bar=True if i == 0 else False,
batch_size=batch_size
)
embeddings_list.extend(batch_embeddings)
if (i + batch_size) % (batch_size * 10) == 0:
Logger(f"Processed {min(i + batch_size, len(sentences))}/{len(sentences)} sentences")
Logger("Batch embedding computation completed")
except Exception as e:
Logger(f"Error in batch encoding: {e}")
Logger("Falling back to random embeddings")
embeddings_list = [np.random.randn(384).astype(np.float32) for _ in sentences]
else:
# 使用随机嵌入
embeddings_list = [np.random.randn(384).astype(np.float32) for _ in sentences]
# 创建处理后的句子列表
processed_sentences = []
for i, (sentence_data, embedding, token_length) in enumerate(zip(sorted_sentences, embeddings_list, token_lengths)):
processed_sentences.append({
'sentence': sentence_data.get('corrected_sentence', ''),
'importance_score': sentence_data.get('importance_score', 0.0),
'token_length': token_length,
'embedding': embedding, # Convert numpy array to list
'original_index': i
})
# # Create a JSON-serializable version for saving
# json_serializable_sentences = []
# for sentence in processed_sentences:
# json_sentence = sentence.copy()
# # Convert embedding to list if it's a numpy array
# if hasattr(json_sentence['embedding'], 'tolist'):
# json_sentence['embedding'] = json_sentence['embedding'].tolist()
# json_serializable_sentences.append(json_sentence)
# json.dump(json_serializable_sentences, open('processed_sentences.json', 'w', encoding='utf-8'))
# processed_sentences = json.load(open('processed_sentences.json', 'r', encoding='utf-8'))
# 转换为numpy数组以便后续处理
embeddings_array = np.array(embeddings_list)
token_lengths_array = np.array(token_lengths)
Logger(f"Embedding processing completed:")
Logger(f" - Total sentences: {len(processed_sentences)}")
Logger(f" - Embedding shape: {embeddings_array.shape}")
Logger(f" - Average token length: {np.mean(token_lengths_array):.2f}")
Logger(f" - Token length range: {np.min(token_lengths_array)} - {np.max(token_lengths_array)}")
# 2. 聚类处理 - 优化版本
Logger("Starting optimized clustering process...")
# 聚类参数
knowledge_num = args.knowledge_num
knowledge_length = args.knowledge_length
min_tokens = int(0.9 * knowledge_length)
max_tokens = knowledge_length
# 优化1: 预计算所有嵌入的相似度矩阵(如果数据量不太大)
if len(processed_sentences) <= 10000: # 只有在数据量不太大时才预计算
Logger("Pre-computing similarity matrix for faster clustering...")
embeddings_matrix = np.array([s['embedding'] for s in processed_sentences])
similarity_matrix = cosine_similarity(embeddings_matrix)
Logger(f"Similarity matrix computed: {similarity_matrix.shape}")
else:
similarity_matrix = None
embeddings_matrix = np.array([s['embedding'] for s in processed_sentences])
clustered_rows = []
remaining_indices = list(range(len(processed_sentences))) # 使用索引而不是对象
Logger(f"Target: {knowledge_num} clusters, each with {min_tokens}-{max_tokens} tokens")
# 选择聚类算法
if args.fast_clustering and len(processed_sentences) > 5000:
Logger("Using ultra-fast approximate clustering algorithm...")
# 超快速聚类:随机采样 + 批量处理
import random
random.seed(42) # 确保可重现性
# 按重要性分层采样
high_importance = [i for i, s in enumerate(processed_sentences) if s['importance_score'] > 0.7]
medium_importance = [i for i, s in enumerate(processed_sentences) if 0.3 <= s['importance_score'] <= 0.7]
low_importance = [i for i, s in enumerate(processed_sentences) if s['importance_score'] < 0.3]
Logger(f"Importance distribution: High={len(high_importance)}, Medium={len(medium_importance)}, Low={len(low_importance)}")
for cluster_idx in tqdm(range(knowledge_num)):
# 分层选择种子:优先选择高重要性句子
if high_importance:
seed_pool = high_importance
elif medium_importance:
seed_pool = medium_importance
else:
seed_pool = low_importance if low_importance else list(range(len(processed_sentences)))
if not seed_pool:
break
# 随机选择种子(在同一重要性层级内)
seed_global_idx = random.choice(seed_pool)
seed_sentence = processed_sentences[seed_global_idx]
# 从所有池中移除种子
for pool in [high_importance, medium_importance, low_importance]:
if seed_global_idx in pool:
pool.remove(seed_global_idx)
current_cluster_indices = [seed_global_idx]
current_tokens = seed_sentence['token_length']
if current_tokens < max_tokens:
# 快速选择:只从附近的句子中随机选择
all_remaining = high_importance + medium_importance + low_importance
if all_remaining:
# 随机采样候选句子(而不是计算所有相似度)
sample_size = min(100, len(all_remaining))
candidates = random.sample(all_remaining, sample_size)
# 简单按token长度和重要性选择
for candidate_idx in candidates:
candidate = processed_sentences[candidate_idx]
candidate_tokens = candidate['token_length']
if current_tokens + candidate_tokens + 1 <= max_tokens:
current_cluster_indices.append(candidate_idx)
current_tokens += candidate_tokens + 1
# 从池中移除
for pool in [high_importance, medium_importance, low_importance]:
if candidate_idx in pool:
pool.remove(candidate_idx)
break
if current_tokens >= min_tokens:
break
# 生成聚类文本
cluster_sentences = [processed_sentences[idx]['sentence'] for idx in current_cluster_indices]
cluster_text = '\n'.join(cluster_sentences)
# 转换为tokens
cluster_tokens = tokenizer.encode(cluster_text, add_special_tokens=False)
if len(cluster_tokens) > knowledge_length:
cluster_tokens = cluster_tokens[:knowledge_length]
else:
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
cluster_tokens.extend([pad_token_id] * (knowledge_length - len(cluster_tokens)))
clustered_rows.append(cluster_tokens)
if (cluster_idx + 1) % 1000 == 0:
total_remaining = len(high_importance) + len(medium_importance) + len(low_importance)
Logger(f"Fast clustering: {cluster_idx + 1}/{knowledge_num} clusters, {total_remaining} sentences remaining")
else:
# 原始优化算法(适用于中等规模数据集)
# 优化2: 批量处理和更高效的数据结构
for cluster_idx in tqdm(range(knowledge_num)):
if not remaining_indices:
Logger(f"No more sentences available. Created {cluster_idx} clusters.")
break
# 2.1 选择importance_score最高的句子作为种子
remaining_sentences_subset = [processed_sentences[i] for i in remaining_indices]
seed_idx_in_subset = max(range(len(remaining_sentences_subset)),
key=lambda i: remaining_sentences_subset[i]['importance_score'])
seed_global_idx = remaining_indices[seed_idx_in_subset]
seed_sentence = processed_sentences[seed_global_idx]
# 从剩余索引中移除种子
remaining_indices.remove(seed_global_idx)
# 当前聚类
current_cluster_indices = [seed_global_idx]
current_tokens = seed_sentence['token_length']
if current_tokens >= max_tokens:
# 如果种子句子已经超过最大token数直接作为一个聚类
cluster_text = seed_sentence['sentence']
else:
# 2.2 优化的相似度计算和选择
if remaining_indices:
if similarity_matrix is not None:
# 使用预计算的相似度矩阵
similarities = similarity_matrix[seed_global_idx][remaining_indices]
else:
# 动态计算相似度(批量)
seed_embedding = embeddings_matrix[seed_global_idx:seed_global_idx+1]
remaining_embeddings = embeddings_matrix[remaining_indices]
similarities = cosine_similarity(seed_embedding, remaining_embeddings)[0]
# 创建(相似度, 原始索引, 在remaining_indices中的位置)的元组列表
similarity_tuples = [(similarities[i], remaining_indices[i], i)
for i in range(len(remaining_indices))]
# 按相似度排序(降序)
similarity_tuples.sort(key=lambda x: x[0], reverse=True)
# 优化3: 贪心选择,但限制搜索范围以提高速度
max_candidates = min(len(similarity_tuples), 500) # 只考虑前500个最相似的句子
selected_indices_in_remaining = []
for sim_score, global_idx, pos_in_remaining in similarity_tuples[:max_candidates]:
candidate = processed_sentences[global_idx]
candidate_tokens = candidate['token_length']
if current_tokens + candidate_tokens + 1 <= max_tokens: # +1 for newline
current_cluster_indices.append(global_idx)
selected_indices_in_remaining.append(pos_in_remaining)
current_tokens += candidate_tokens + 1
if current_tokens >= min_tokens:
break
# 批量移除选中的句子(从后往前移除以避免索引问题)
for pos in sorted(selected_indices_in_remaining, reverse=True):
remaining_indices.pop(pos)
# 拼接句子
cluster_sentences = [processed_sentences[idx]['sentence'] for idx in current_cluster_indices]
cluster_text = '\n'.join(cluster_sentences)
# 将聚类文本转换为token
cluster_tokens = tokenizer.encode(cluster_text, add_special_tokens=False)
# 截断或填充到knowledge_length
if len(cluster_tokens) > knowledge_length:
cluster_tokens = cluster_tokens[:knowledge_length]
else:
# 用pad_token_id填充
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
cluster_tokens.extend([pad_token_id] * (knowledge_length - len(cluster_tokens)))
clustered_rows.append(cluster_tokens)
# 优化4: 减少日志频率
if (cluster_idx + 1) % 500 == 0:
Logger(f"Created {cluster_idx + 1}/{knowledge_num} clusters, {len(remaining_indices)} sentences remaining")
# 如果聚类数量不足用随机token填充
while len(clustered_rows) < knowledge_num:
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
random_tokens = [pad_token_id] * knowledge_length
clustered_rows.append(random_tokens)
# 转换为tensor
clustered_tensor = torch.tensor(clustered_rows, dtype=torch.long)
Logger(f"Clustering completed:")
Logger(f" - Created {len(clustered_rows)} clusters")
Logger(f" - Cluster shape: {clustered_tensor.shape}")
Logger(f" - Expected shape: ({knowledge_num}, {knowledge_length})")
# 3. 初始化模型的weight_down_embed
if hasattr(model, 'extract_db') and hasattr(model.extract_db, 'weight_down_embed'):
model.extract_db.weight_down_embed.data.copy_(clustered_tensor)
Logger("Successfully initialized model.extract_db.weight_down_embed with clustered data")
else:
Logger("Warning: Could not find model.extract_db.weight_down_embed to initialize")
# 存储为全局变量作为备选
globals()['clustered_database'] = clustered_tensor
Logger(f"Database embeddings and sentences stored in model")
Logger(f'LLM总参数量{sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} 百万') Logger(f'LLM总参数量{sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} 百万')
return model, tokenizer return model, tokenizer
@ -290,7 +652,9 @@ def main():
parser.add_argument("--profile_interval", type=int, default=10, help="性能分析打印间隔(步数)") parser.add_argument("--profile_interval", type=int, default=10, help="性能分析打印间隔(步数)")
parser.add_argument("--use_flash_attn", action="store_true", default=True, help="启用FlashAttention") parser.add_argument("--use_flash_attn", action="store_true", default=True, help="启用FlashAttention")
parser.add_argument("--knowledge_num", type=int, default=64*64,help="知识库的数据数目") parser.add_argument("--knowledge_num", type=int, default=64*64,help="知识库的数据数目")
parser.add_argument("--knowledge_length", type=int, default=8,help="知识库的句子长度") parser.add_argument("--knowledge_length", type=int, default=64,help="知识库的句子长度")
parser.add_argument("--database_init_path", type=str, default="./dataset/database_init.json", help="数据库初始化路径")
parser.add_argument("--fast_clustering", action="store_true", default=True, help="使用快速近似聚类算法(适用于大数据集)")
args = parser.parse_args() args = parser.parse_args()
######################################################### #########################################################
@ -379,7 +743,7 @@ def main():
######################################################### #########################################################
# 初始化模型和tokenizer # 初始化模型和tokenizer
######################################################### #########################################################
model, tokenizer = init_model(lm_config, args.pretrained_embedding_path) model, tokenizer = init_model(lm_config, args.pretrained_embedding_path, args.database_init_path, args)
# 将accelerator传递给init_model函数中的Logger调用 # 将accelerator传递给init_model函数中的Logger调用
Logger(f'模型初始化完成', accelerator) Logger(f'模型初始化完成', accelerator)