update
This commit is contained in:
parent
a3ea93597c
commit
d93889194d
136
model/model.py
136
model/model.py
@ -116,13 +116,13 @@ class Attention(nn.Module):
|
||||
repeat_kv(xk, self.n_rep).transpose(1, 2),
|
||||
repeat_kv(xv, self.n_rep).transpose(1, 2)
|
||||
)
|
||||
|
||||
|
||||
# 如果提供了db_value,根据头的数量调整它的形状并与xv合并
|
||||
if db_value is not None:
|
||||
# 确保db_value的形状与xv兼容,假设db_value形状为[B, N, H, D]
|
||||
if db_value.ndim == 4: # [B, N, H, D]
|
||||
db_value = db_value.transpose(1, 2) # -> [B, H, N, D]
|
||||
|
||||
|
||||
# 检查是否需要调整D维度
|
||||
if db_value.shape[-1] != xv.shape[-1]:
|
||||
# 如果db_value的维度与xv不同,可以添加一个投影层
|
||||
@ -138,11 +138,11 @@ class Attention(nn.Module):
|
||||
factor = xv.shape[-1] // db_value.shape[-1]
|
||||
db_value = db_value.unsqueeze(-1).repeat(1, 1, 1, 1, factor)
|
||||
db_value = db_value.view(bsz, self.n_local_heads, seq_len, xv.shape[-1])
|
||||
|
||||
|
||||
# 将db_value与xv相加或融合
|
||||
# 这里我们简单地将它们相加,但你也可以使用其他融合方法
|
||||
xv = xv + db_value
|
||||
|
||||
|
||||
# 使用Flash Attention
|
||||
if self.flash and seq_len != 1:
|
||||
dropout_p = self.dropout if self.training else 0.0
|
||||
@ -173,42 +173,42 @@ class CrossAttention(nn.Module):
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.num_heads = 8
|
||||
self.head_dim = self.config.dim // self.num_heads
|
||||
self.num_heads = 8
|
||||
self.head_dim = self.config.dim // self.num_heads
|
||||
self.to_q = nn.Linear(self.config.dim, self.config.dim, bias=False)
|
||||
self.to_k = nn.Linear(self.config.dim, self.config.dim, bias=False)
|
||||
self.to_v = nn.Linear(self.config.dim, self.config.dim, bias=False)
|
||||
|
||||
|
||||
self.to_out = nn.Linear(self.config.dim, self.config.dim, bias=False)
|
||||
|
||||
|
||||
def forward(self, x, db, context_mask=None, pos_emb=None):
|
||||
batch_size = x.size(0)
|
||||
|
||||
|
||||
# 分离多头
|
||||
q = self.to_q(x).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
k = self.to_k(db).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
v = self.to_v(db).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
|
||||
|
||||
if pos_emb is not None:
|
||||
pos_emb = pos_emb.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
|
||||
q = q + pos_emb
|
||||
k = k + pos_emb
|
||||
v = v + pos_emb
|
||||
|
||||
|
||||
attn_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
||||
|
||||
|
||||
if context_mask is not None:
|
||||
expanded_mask = context_mask.unsqueeze(1).expand(-1, self.num_heads, -1, -1)
|
||||
attn_scores = attn_scores.masked_fill(expanded_mask == 0, -1e10)
|
||||
|
||||
|
||||
attn_weights = F.softmax(attn_scores, dim=-1)
|
||||
|
||||
context = torch.matmul(attn_weights, v)
|
||||
|
||||
|
||||
context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.config.dim)
|
||||
|
||||
context = self.to_out(context)
|
||||
|
||||
|
||||
return context
|
||||
|
||||
class FeedForward(nn.Module):
|
||||
@ -350,25 +350,25 @@ class MiniMindBlock(nn.Module):
|
||||
self.head_dim = config.dim // config.n_heads
|
||||
self.attention = Attention(config)
|
||||
self.cross_att = CrossAttention(config)
|
||||
|
||||
|
||||
self.layer_id = layer_id
|
||||
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
||||
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
||||
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
|
||||
|
||||
|
||||
# 假设num_experts是已定义的总专家数量的平方根
|
||||
|
||||
|
||||
|
||||
|
||||
# 查询生成的参数
|
||||
|
||||
|
||||
|
||||
|
||||
# 创建查询生成模块
|
||||
# if weight_down_embed is not None:
|
||||
# self.to_queries = nn.Sequential(
|
||||
# nn.Linear(config.dim, self.dim_key * 2, bias=False),
|
||||
# # nn.Unflatten(2, (2, self.n_heads, self.dim_key)) # 替代Rearrange
|
||||
# )
|
||||
|
||||
|
||||
# # 超参数
|
||||
# self.product_key_topk = min(16, self.num_keys) # 确保不超过num_keys
|
||||
# self.num_experts_per_head_topk = 1 # 最终每个头选取的专家数
|
||||
@ -376,47 +376,47 @@ class MiniMindBlock(nn.Module):
|
||||
def forward(self, x, db_value, pos_cis, past_key_value=None, use_cache=True):
|
||||
# import pdb;pdb.set_trace()
|
||||
# db_value = None
|
||||
|
||||
|
||||
# # 如果有weight_down_embed,使用Product Key机制
|
||||
# if self.weight_down_embed is not None:
|
||||
# # 1. 生成queries
|
||||
# batch_size, seq_len, dim = x.shape
|
||||
|
||||
|
||||
# # collapse sequence dimension by averaging
|
||||
# x_flat = x.mean(dim=1) # [batch_size, dim]
|
||||
# queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
|
||||
# queries = queries.reshape(batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
|
||||
# queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
|
||||
|
||||
|
||||
# # 2. 计算queries与keys的相似度
|
||||
# sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
|
||||
|
||||
|
||||
# # 3. 在两个子空间分别做top-k
|
||||
# scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
|
||||
# scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
|
||||
# indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
|
||||
|
||||
|
||||
# # 4. 组合两个子空间的分数和索引
|
||||
# all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
|
||||
# all_scores = all_scores.view(*all_scores.shape[:-2], -1)
|
||||
|
||||
|
||||
# all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
|
||||
# all_indices = all_indices.view(*all_indices.shape[:-2], -1)
|
||||
|
||||
|
||||
# # 5. 最终top-k选择
|
||||
# scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
|
||||
# indices = all_indices.gather(-1, pk_indices)
|
||||
|
||||
|
||||
# # 6. 从embedding中获取专家值
|
||||
|
||||
|
||||
# # 从embedding中获取值
|
||||
# flat_indices = indices.view(-1) # 将索引展平为一维张量
|
||||
# db_values = self.weight_down_embed(flat_indices)
|
||||
|
||||
|
||||
# # 重塑回原始形状
|
||||
# db_value = db_values.view(batch_size, -1, dim)
|
||||
|
||||
|
||||
|
||||
|
||||
# 注意力计算
|
||||
h_attn, past_kv = self.attention(
|
||||
self.attention_norm(x),
|
||||
@ -428,7 +428,7 @@ class MiniMindBlock(nn.Module):
|
||||
|
||||
h_attn = self.cross_att(h_attn, db_value)
|
||||
|
||||
# 残差连接
|
||||
# 残差连接
|
||||
h = x + h_attn
|
||||
|
||||
# 前馈神经网络
|
||||
@ -441,15 +441,15 @@ class ExtractDB(nn.Module):
|
||||
super().__init__()
|
||||
self.batch_size = None
|
||||
self.dim = params.dim
|
||||
self.dim_key = self.dim // 2
|
||||
self.dim_key = self.dim // 2
|
||||
self.num_experts = 10 * 10 # 100专家,确保是完全平方数
|
||||
# 将knowledge_dim设置为与head_dim相同,以便在attention中直接使用
|
||||
self.head_dim = params.dim // params.n_heads
|
||||
self.knowledge_dim = 8*params.dim
|
||||
|
||||
|
||||
# 使用register_buffer代替nn.Parameter,避免梯度问题
|
||||
self.register_buffer('weight_down_embed', torch.randn(self.num_experts, self.knowledge_dim) * 0.02)
|
||||
|
||||
|
||||
self.num_keys = int(math.sqrt(self.num_experts)) if self.num_experts > 0 else 0
|
||||
self.product_key_topk = min(16, self.num_keys)
|
||||
self.keys = nn.Parameter(torch.randn(self.num_keys, 2, self.dim_key) * 0.02)
|
||||
@ -457,45 +457,45 @@ class ExtractDB(nn.Module):
|
||||
self.to_queries = nn.Sequential(
|
||||
nn.Linear(params.dim, self.dim_key * 2, bias=False),
|
||||
)
|
||||
|
||||
|
||||
def q_to_k(self,x):
|
||||
# 1. 生成queries
|
||||
self.batch_size, seq_len, dim = x.shape
|
||||
|
||||
|
||||
# collapse sequence dimension by averaging
|
||||
x_flat = x.mean(dim=1) # [batch_size, dim]
|
||||
|
||||
queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
|
||||
queries = queries.reshape(self.batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
|
||||
queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
|
||||
|
||||
|
||||
# 2. 计算queries与keys的相似度
|
||||
sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
|
||||
|
||||
|
||||
# 3. 在两个子空间分别做top-k
|
||||
scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
|
||||
scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
|
||||
indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
|
||||
|
||||
|
||||
# 4. 组合两个子空间的分数和索引
|
||||
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
|
||||
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
|
||||
|
||||
|
||||
all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
|
||||
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
|
||||
|
||||
|
||||
# 5. 最终top-k选择
|
||||
scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
|
||||
indices = all_indices.gather(-1, pk_indices)
|
||||
flat_indices = indices.view(-1)
|
||||
return flat_indices
|
||||
|
||||
|
||||
def get_data(self, index):
|
||||
# 直接从GPU获取embedding
|
||||
db_values = self.weight_down_embed[index]
|
||||
db_value = db_values.view(self.batch_size, -1, self.dim)
|
||||
return db_value
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def updata_value(self, k, v):
|
||||
# 直接更新buffer上的值 (不需要梯度)
|
||||
@ -504,7 +504,7 @@ class ExtractDB(nn.Module):
|
||||
v_reshaped = v_reshaped.to(dtype=self.weight_down_embed.dtype)
|
||||
self.weight_down_embed[k] = v_reshaped
|
||||
|
||||
|
||||
|
||||
|
||||
class MiniMindLM(PreTrainedModel):
|
||||
config_class = LMConfig
|
||||
@ -523,12 +523,12 @@ class MiniMindLM(PreTrainedModel):
|
||||
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
||||
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
|
||||
self.tok_embeddings.weight = self.output.weight
|
||||
|
||||
|
||||
# Calculate input dimension
|
||||
input_dim = (self.params.max_seq_len-1)*self.params.n_layers
|
||||
# Use a bottleneck architecture to reduce parameters
|
||||
bottleneck_dim = 256 # Significantly smaller bottleneck dimension
|
||||
|
||||
|
||||
# Factorized shared downsampling using two smaller convolutions
|
||||
self.shared_downsample = nn.Sequential(
|
||||
# First reduce input dimension to bottleneck
|
||||
@ -537,13 +537,13 @@ class MiniMindLM(PreTrainedModel):
|
||||
# Then expand to target dimension
|
||||
nn.Conv1d(bottleneck_dim, 128*8, kernel_size=1, padding='same')
|
||||
)
|
||||
|
||||
|
||||
# Specific layers for v path
|
||||
self.downsample_v_specific = nn.Sequential(
|
||||
nn.Conv1d(128*8, 128, kernel_size=1, padding='same'),
|
||||
nn.Conv1d(128, 8, kernel_size=1, padding='same')
|
||||
)
|
||||
|
||||
|
||||
# Specific layers for q path
|
||||
self.downsample_q_specific = nn.Sequential(
|
||||
nn.Conv1d(128*8, 512, kernel_size=1, padding='same')
|
||||
@ -551,7 +551,6 @@ class MiniMindLM(PreTrainedModel):
|
||||
self.register_buffer("pos_cis",
|
||||
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta),
|
||||
persistent=False)
|
||||
self.OUT = CausalLMOutputWithPast()
|
||||
self.params = params
|
||||
|
||||
def forward(self,
|
||||
@ -572,13 +571,13 @@ class MiniMindLM(PreTrainedModel):
|
||||
if self.params.disable_db:
|
||||
# 创建一个形状为[batch_size, n_layers, dim]的tensor,所有元素值为1e-4
|
||||
batch_size = h.size(0)
|
||||
db_value = torch.full((batch_size, self.n_layers, self.params.dim), 1e-4,
|
||||
db_value = torch.full((batch_size, self.n_layers, self.params.dim), 1e-4,
|
||||
dtype=h.dtype, device=h.device)
|
||||
else:
|
||||
# 正常模式,使用数据库查询
|
||||
index = self.extract_db.q_to_k(h)
|
||||
db_value = self.extract_db.get_data(index)
|
||||
|
||||
|
||||
h, past_kv = layer(
|
||||
h, db_value, pos_cis,
|
||||
past_key_value=past_key_values[l],
|
||||
@ -587,15 +586,15 @@ class MiniMindLM(PreTrainedModel):
|
||||
|
||||
past_kvs.append(past_kv)
|
||||
h_list.append(h.unsqueeze(0))
|
||||
|
||||
|
||||
h_tensor = torch.cat(h_list, dim=0).permute(1, 0, 2, 3)
|
||||
|
||||
|
||||
# 只在非禁用数据库模式下执行数据库更新逻辑
|
||||
if not self.params.disable_db:
|
||||
# 使用detach()分离计算图,避免多次反向传播
|
||||
h_tensor_detached = h_tensor.detach()
|
||||
h_tensor_detached = h_tensor_detached.reshape(h_tensor_detached.shape[0], -1, self.params.dim)
|
||||
|
||||
|
||||
# 数据库更新逻辑与主计算图分离
|
||||
with torch.no_grad():
|
||||
# Compute shared downsampling layer once
|
||||
@ -604,15 +603,24 @@ class MiniMindLM(PreTrainedModel):
|
||||
z_q = self.downsample_q_specific(shared_features)
|
||||
z_k = self.extract_db.q_to_k(z_q)
|
||||
self.extract_db.updata_value(z_k, z_v)
|
||||
|
||||
|
||||
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
||||
logits = self.output(self.norm(h)[:, slice_indices, :])
|
||||
aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward))
|
||||
self.OUT.__setitem__('last_hidden_state', h)
|
||||
self.OUT.__setitem__('logits', logits)
|
||||
self.OUT.__setitem__('aux_loss', aux_loss)
|
||||
self.OUT.__setitem__('past_key_values', past_kvs)
|
||||
return self.OUT
|
||||
|
||||
# 进一步简化,只保留必要的参数
|
||||
output = CausalLMOutputWithPast(
|
||||
logits=logits,
|
||||
past_key_values=past_kvs,
|
||||
)
|
||||
|
||||
# 尝试添加其他属性(如果支持的话)
|
||||
try:
|
||||
output.hidden_states = h
|
||||
except:
|
||||
pass
|
||||
|
||||
return output
|
||||
|
||||
@torch.inference_mode()
|
||||
def generate(self, input_ids, eos_token_id=2, max_new_tokens=1024, temperature=0.75, top_p=0.90,
|
||||
|
@ -40,6 +40,8 @@ def get_lr(current_step, total_steps, lr):
|
||||
def train_epoch(epoch, wandb):
|
||||
loss_fct = nn.CrossEntropyLoss(reduction='none')
|
||||
start_time = time.time()
|
||||
# 在函数开始处定义moe_path,避免在异常处理中引用未定义变量
|
||||
moe_path = '_moe' if lm_config.use_moe else ''
|
||||
for step, (X, Y, loss_mask) in enumerate(train_loader):
|
||||
try:
|
||||
# 将数据加载到设备上
|
||||
@ -59,7 +61,20 @@ def train_epoch(epoch, wandb):
|
||||
Y.view(-1)
|
||||
).view(Y.size())
|
||||
loss = (loss * loss_mask).sum() / loss_mask.sum()
|
||||
loss += res.aux_loss
|
||||
# 添加辅助损失,如果存在的话
|
||||
try:
|
||||
if hasattr(model, 'module'):
|
||||
# DDP情况
|
||||
aux_loss = sum(l.feed_forward.aux_loss for l in model.module.layers
|
||||
if hasattr(l.feed_forward, 'aux_loss'))
|
||||
else:
|
||||
# 非DDP情况
|
||||
aux_loss = sum(l.feed_forward.aux_loss for l in model.layers
|
||||
if hasattr(l.feed_forward, 'aux_loss'))
|
||||
loss += aux_loss
|
||||
except Exception as e:
|
||||
Logger(f"Warning: Could not add auxiliary loss: {e}")
|
||||
# 如果出错,不添加辅助损失
|
||||
loss = loss / args.accumulation_steps
|
||||
|
||||
# Print data types for debugging
|
||||
@ -106,7 +121,7 @@ def train_epoch(epoch, wandb):
|
||||
# 保存模型
|
||||
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
|
||||
model.eval()
|
||||
moe_path = '_moe' if lm_config.use_moe else ''
|
||||
# 使用函数开始处定义的moe_path变量
|
||||
ckp = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}.pth'
|
||||
|
||||
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
||||
@ -122,9 +137,9 @@ def train_epoch(epoch, wandb):
|
||||
save_path = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}_nanERROR.pth'
|
||||
if os.path.exists(save_path):
|
||||
os.remove(save_path)
|
||||
|
||||
|
||||
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
||||
state_dict = model.module.state_dict()
|
||||
state_dict = model.module.state_dict()
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
torch.save(state_dict, save_path)
|
||||
@ -132,12 +147,12 @@ def train_epoch(epoch, wandb):
|
||||
for name, param in model.named_parameters():
|
||||
if param.grad is not None and torch.isnan(param.grad).any():
|
||||
print(f"NaN gradient in parameter: {name}")
|
||||
|
||||
|
||||
for name, param in model.named_parameters():
|
||||
if param.grad is not None and torch.isnan(param.grad).any():
|
||||
print(f"Parameter {name} values: {param.data}")
|
||||
print(f"Parameter {name} gradients: {param.grad}")
|
||||
|
||||
|
||||
raise ValueError("NaN gradient detected")
|
||||
|
||||
|
||||
@ -179,7 +194,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--out_dir", type=str, default="out")
|
||||
# 若要以最快速度实现zero则epochs设置为1轮;否则应当利用有限的数据训练2~6个epochs。
|
||||
parser.add_argument("--epochs", type=int, default=3)
|
||||
parser.add_argument("--batch_size", type=int, default=4)
|
||||
parser.add_argument("--batch_size", type=int, default=8)
|
||||
parser.add_argument("--learning_rate", type=float, default=2e-4)
|
||||
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu") #如果GPU可用,则使用GPU,否则使用CPU。
|
||||
parser.add_argument("--dtype", type=str, default="bfloat16")
|
||||
@ -193,9 +208,9 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--log_interval", type=int, default=100) #日志打印间隔,用于控制日志打印的频率。
|
||||
parser.add_argument("--save_interval", type=int, default=100) #模型保存间隔,用于控制模型保存的频率。
|
||||
parser.add_argument('--local_rank', type=int, default=-1) #本地进程编号,用于分布式训练。
|
||||
parser.add_argument('--dim', default=4096, type=int) #模型维度,用于控制模型的大小。
|
||||
parser.add_argument('--dim', default=2048, type=int) #模型维度,用于控制模型的大小。
|
||||
parser.add_argument('--n_layers', default=32, type=int) #层数,用于控制模型层数。
|
||||
parser.add_argument('--max_seq_len', default=2048, type=int) #最大序列长度,用于控制输入序列的最大长度。
|
||||
parser.add_argument('--max_seq_len', default=1024, type=int) #最大序列长度,用于控制输入序列的最大长度。
|
||||
parser.add_argument('--use_moe', default=False, type=bool) #是否使用MOE,用于控制是否使用MOE。
|
||||
parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能,使用固定值1e-4替代") #禁用数据库功能,启用特殊模式
|
||||
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") #数据路径,用于控制数据集的路径。
|
||||
@ -203,9 +218,9 @@ if __name__ == "__main__":
|
||||
args = parser.parse_args()
|
||||
|
||||
lm_config = LMConfig(
|
||||
dim=args.dim,
|
||||
n_layers=args.n_layers,
|
||||
max_seq_len=args.max_seq_len,
|
||||
dim=args.dim,
|
||||
n_layers=args.n_layers,
|
||||
max_seq_len=args.max_seq_len,
|
||||
use_moe=args.use_moe,
|
||||
disable_db=args.disable_db # 添加禁用数据库参数
|
||||
) #创建LMConfig对象,用于控制模型配置。
|
||||
@ -240,11 +255,11 @@ if __name__ == "__main__":
|
||||
|
||||
if args.use_wandb and (not ddp or ddp_local_rank == 0):
|
||||
import wandb
|
||||
|
||||
|
||||
# Merge args and lm_config parameters for wandb config
|
||||
config = vars(args).copy()
|
||||
config.update(lm_config.__dict__)
|
||||
|
||||
|
||||
wandb.init(project=args.wandb_project, name=args.wandb_run_name, config=config)
|
||||
else:
|
||||
wandb = None
|
||||
@ -267,8 +282,9 @@ if __name__ == "__main__":
|
||||
|
||||
if ddp:
|
||||
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
|
||||
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
|
||||
|
||||
# 添加find_unused_parameters=True参数,解决未使用参数的问题
|
||||
model = DistributedDataParallel(model, device_ids=[ddp_local_rank], find_unused_parameters=True)
|
||||
|
||||
torch.autograd.set_detect_anomaly(True)
|
||||
iter_per_epoch = len(train_loader)
|
||||
for epoch in range(args.epochs):
|
||||
|
Loading…
x
Reference in New Issue
Block a user