This commit is contained in:
Jax922 2025-05-12 11:53:10 +08:00
parent a3ea93597c
commit d93889194d
2 changed files with 104 additions and 80 deletions

View File

@ -116,13 +116,13 @@ class Attention(nn.Module):
repeat_kv(xk, self.n_rep).transpose(1, 2),
repeat_kv(xv, self.n_rep).transpose(1, 2)
)
# 如果提供了db_value根据头的数量调整它的形状并与xv合并
if db_value is not None:
# 确保db_value的形状与xv兼容假设db_value形状为[B, N, H, D]
if db_value.ndim == 4: # [B, N, H, D]
db_value = db_value.transpose(1, 2) # -> [B, H, N, D]
# 检查是否需要调整D维度
if db_value.shape[-1] != xv.shape[-1]:
# 如果db_value的维度与xv不同可以添加一个投影层
@ -138,11 +138,11 @@ class Attention(nn.Module):
factor = xv.shape[-1] // db_value.shape[-1]
db_value = db_value.unsqueeze(-1).repeat(1, 1, 1, 1, factor)
db_value = db_value.view(bsz, self.n_local_heads, seq_len, xv.shape[-1])
# 将db_value与xv相加或融合
# 这里我们简单地将它们相加,但你也可以使用其他融合方法
xv = xv + db_value
# 使用Flash Attention
if self.flash and seq_len != 1:
dropout_p = self.dropout if self.training else 0.0
@ -173,42 +173,42 @@ class CrossAttention(nn.Module):
):
super().__init__()
self.config = config
self.num_heads = 8
self.head_dim = self.config.dim // self.num_heads
self.num_heads = 8
self.head_dim = self.config.dim // self.num_heads
self.to_q = nn.Linear(self.config.dim, self.config.dim, bias=False)
self.to_k = nn.Linear(self.config.dim, self.config.dim, bias=False)
self.to_v = nn.Linear(self.config.dim, self.config.dim, bias=False)
self.to_out = nn.Linear(self.config.dim, self.config.dim, bias=False)
def forward(self, x, db, context_mask=None, pos_emb=None):
batch_size = x.size(0)
# 分离多头
q = self.to_q(x).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
k = self.to_k(db).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
v = self.to_v(db).view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
if pos_emb is not None:
pos_emb = pos_emb.view(batch_size, -1, self.num_heads, self.head_dim).transpose(1, 2)
q = q + pos_emb
k = k + pos_emb
v = v + pos_emb
attn_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.head_dim)
if context_mask is not None:
expanded_mask = context_mask.unsqueeze(1).expand(-1, self.num_heads, -1, -1)
attn_scores = attn_scores.masked_fill(expanded_mask == 0, -1e10)
attn_weights = F.softmax(attn_scores, dim=-1)
context = torch.matmul(attn_weights, v)
context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.config.dim)
context = self.to_out(context)
return context
class FeedForward(nn.Module):
@ -350,25 +350,25 @@ class MiniMindBlock(nn.Module):
self.head_dim = config.dim // config.n_heads
self.attention = Attention(config)
self.cross_att = CrossAttention(config)
self.layer_id = layer_id
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
# 假设num_experts是已定义的总专家数量的平方根
# 查询生成的参数
# 创建查询生成模块
# if weight_down_embed is not None:
# self.to_queries = nn.Sequential(
# nn.Linear(config.dim, self.dim_key * 2, bias=False),
# # nn.Unflatten(2, (2, self.n_heads, self.dim_key)) # 替代Rearrange
# )
# # 超参数
# self.product_key_topk = min(16, self.num_keys) # 确保不超过num_keys
# self.num_experts_per_head_topk = 1 # 最终每个头选取的专家数
@ -376,47 +376,47 @@ class MiniMindBlock(nn.Module):
def forward(self, x, db_value, pos_cis, past_key_value=None, use_cache=True):
# import pdb;pdb.set_trace()
# db_value = None
# # 如果有weight_down_embed使用Product Key机制
# if self.weight_down_embed is not None:
# # 1. 生成queries
# batch_size, seq_len, dim = x.shape
# # collapse sequence dimension by averaging
# x_flat = x.mean(dim=1) # [batch_size, dim]
# queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
# queries = queries.reshape(batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
# queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
# # 2. 计算queries与keys的相似度
# sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
# # 3. 在两个子空间分别做top-k
# scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
# scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
# indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
# # 4. 组合两个子空间的分数和索引
# all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
# all_scores = all_scores.view(*all_scores.shape[:-2], -1)
# all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
# all_indices = all_indices.view(*all_indices.shape[:-2], -1)
# # 5. 最终top-k选择
# scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
# indices = all_indices.gather(-1, pk_indices)
# # 6. 从embedding中获取专家值
# # 从embedding中获取值
# flat_indices = indices.view(-1) # 将索引展平为一维张量
# db_values = self.weight_down_embed(flat_indices)
# # 重塑回原始形状
# db_value = db_values.view(batch_size, -1, dim)
# 注意力计算
h_attn, past_kv = self.attention(
self.attention_norm(x),
@ -428,7 +428,7 @@ class MiniMindBlock(nn.Module):
h_attn = self.cross_att(h_attn, db_value)
# 残差连接
# 残差连接
h = x + h_attn
# 前馈神经网络
@ -441,15 +441,15 @@ class ExtractDB(nn.Module):
super().__init__()
self.batch_size = None
self.dim = params.dim
self.dim_key = self.dim // 2
self.dim_key = self.dim // 2
self.num_experts = 10 * 10 # 100专家确保是完全平方数
# 将knowledge_dim设置为与head_dim相同以便在attention中直接使用
self.head_dim = params.dim // params.n_heads
self.knowledge_dim = 8*params.dim
# 使用register_buffer代替nn.Parameter避免梯度问题
self.register_buffer('weight_down_embed', torch.randn(self.num_experts, self.knowledge_dim) * 0.02)
self.num_keys = int(math.sqrt(self.num_experts)) if self.num_experts > 0 else 0
self.product_key_topk = min(16, self.num_keys)
self.keys = nn.Parameter(torch.randn(self.num_keys, 2, self.dim_key) * 0.02)
@ -457,45 +457,45 @@ class ExtractDB(nn.Module):
self.to_queries = nn.Sequential(
nn.Linear(params.dim, self.dim_key * 2, bias=False),
)
def q_to_k(self,x):
# 1. 生成queries
self.batch_size, seq_len, dim = x.shape
# collapse sequence dimension by averaging
x_flat = x.mean(dim=1) # [batch_size, dim]
queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
queries = queries.reshape(self.batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
# 2. 计算queries与keys的相似度
sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
# 3. 在两个子空间分别做top-k
scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
# 4. 组合两个子空间的分数和索引
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
# 5. 最终top-k选择
scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
indices = all_indices.gather(-1, pk_indices)
flat_indices = indices.view(-1)
return flat_indices
def get_data(self, index):
# 直接从GPU获取embedding
db_values = self.weight_down_embed[index]
db_value = db_values.view(self.batch_size, -1, self.dim)
return db_value
@torch.no_grad()
def updata_value(self, k, v):
# 直接更新buffer上的值 (不需要梯度)
@ -504,7 +504,7 @@ class ExtractDB(nn.Module):
v_reshaped = v_reshaped.to(dtype=self.weight_down_embed.dtype)
self.weight_down_embed[k] = v_reshaped
class MiniMindLM(PreTrainedModel):
config_class = LMConfig
@ -523,12 +523,12 @@ class MiniMindLM(PreTrainedModel):
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
self.tok_embeddings.weight = self.output.weight
# Calculate input dimension
input_dim = (self.params.max_seq_len-1)*self.params.n_layers
# Use a bottleneck architecture to reduce parameters
bottleneck_dim = 256 # Significantly smaller bottleneck dimension
# Factorized shared downsampling using two smaller convolutions
self.shared_downsample = nn.Sequential(
# First reduce input dimension to bottleneck
@ -537,13 +537,13 @@ class MiniMindLM(PreTrainedModel):
# Then expand to target dimension
nn.Conv1d(bottleneck_dim, 128*8, kernel_size=1, padding='same')
)
# Specific layers for v path
self.downsample_v_specific = nn.Sequential(
nn.Conv1d(128*8, 128, kernel_size=1, padding='same'),
nn.Conv1d(128, 8, kernel_size=1, padding='same')
)
# Specific layers for q path
self.downsample_q_specific = nn.Sequential(
nn.Conv1d(128*8, 512, kernel_size=1, padding='same')
@ -551,7 +551,6 @@ class MiniMindLM(PreTrainedModel):
self.register_buffer("pos_cis",
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta),
persistent=False)
self.OUT = CausalLMOutputWithPast()
self.params = params
def forward(self,
@ -572,13 +571,13 @@ class MiniMindLM(PreTrainedModel):
if self.params.disable_db:
# 创建一个形状为[batch_size, n_layers, dim]的tensor所有元素值为1e-4
batch_size = h.size(0)
db_value = torch.full((batch_size, self.n_layers, self.params.dim), 1e-4,
db_value = torch.full((batch_size, self.n_layers, self.params.dim), 1e-4,
dtype=h.dtype, device=h.device)
else:
# 正常模式,使用数据库查询
index = self.extract_db.q_to_k(h)
db_value = self.extract_db.get_data(index)
h, past_kv = layer(
h, db_value, pos_cis,
past_key_value=past_key_values[l],
@ -587,15 +586,15 @@ class MiniMindLM(PreTrainedModel):
past_kvs.append(past_kv)
h_list.append(h.unsqueeze(0))
h_tensor = torch.cat(h_list, dim=0).permute(1, 0, 2, 3)
# 只在非禁用数据库模式下执行数据库更新逻辑
if not self.params.disable_db:
# 使用detach()分离计算图,避免多次反向传播
h_tensor_detached = h_tensor.detach()
h_tensor_detached = h_tensor_detached.reshape(h_tensor_detached.shape[0], -1, self.params.dim)
# 数据库更新逻辑与主计算图分离
with torch.no_grad():
# Compute shared downsampling layer once
@ -604,15 +603,24 @@ class MiniMindLM(PreTrainedModel):
z_q = self.downsample_q_specific(shared_features)
z_k = self.extract_db.q_to_k(z_q)
self.extract_db.updata_value(z_k, z_v)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.output(self.norm(h)[:, slice_indices, :])
aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward))
self.OUT.__setitem__('last_hidden_state', h)
self.OUT.__setitem__('logits', logits)
self.OUT.__setitem__('aux_loss', aux_loss)
self.OUT.__setitem__('past_key_values', past_kvs)
return self.OUT
# 进一步简化,只保留必要的参数
output = CausalLMOutputWithPast(
logits=logits,
past_key_values=past_kvs,
)
# 尝试添加其他属性(如果支持的话)
try:
output.hidden_states = h
except:
pass
return output
@torch.inference_mode()
def generate(self, input_ids, eos_token_id=2, max_new_tokens=1024, temperature=0.75, top_p=0.90,

View File

@ -40,6 +40,8 @@ def get_lr(current_step, total_steps, lr):
def train_epoch(epoch, wandb):
loss_fct = nn.CrossEntropyLoss(reduction='none')
start_time = time.time()
# 在函数开始处定义moe_path避免在异常处理中引用未定义变量
moe_path = '_moe' if lm_config.use_moe else ''
for step, (X, Y, loss_mask) in enumerate(train_loader):
try:
# 将数据加载到设备上
@ -59,7 +61,20 @@ def train_epoch(epoch, wandb):
Y.view(-1)
).view(Y.size())
loss = (loss * loss_mask).sum() / loss_mask.sum()
loss += res.aux_loss
# 添加辅助损失,如果存在的话
try:
if hasattr(model, 'module'):
# DDP情况
aux_loss = sum(l.feed_forward.aux_loss for l in model.module.layers
if hasattr(l.feed_forward, 'aux_loss'))
else:
# 非DDP情况
aux_loss = sum(l.feed_forward.aux_loss for l in model.layers
if hasattr(l.feed_forward, 'aux_loss'))
loss += aux_loss
except Exception as e:
Logger(f"Warning: Could not add auxiliary loss: {e}")
# 如果出错,不添加辅助损失
loss = loss / args.accumulation_steps
# Print data types for debugging
@ -106,7 +121,7 @@ def train_epoch(epoch, wandb):
# 保存模型
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
model.eval()
moe_path = '_moe' if lm_config.use_moe else ''
# 使用函数开始处定义的moe_path变量
ckp = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}.pth'
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
@ -122,9 +137,9 @@ def train_epoch(epoch, wandb):
save_path = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}_nanERROR.pth'
if os.path.exists(save_path):
os.remove(save_path)
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
state_dict = model.module.state_dict()
state_dict = model.module.state_dict()
else:
state_dict = model.state_dict()
torch.save(state_dict, save_path)
@ -132,12 +147,12 @@ def train_epoch(epoch, wandb):
for name, param in model.named_parameters():
if param.grad is not None and torch.isnan(param.grad).any():
print(f"NaN gradient in parameter: {name}")
for name, param in model.named_parameters():
if param.grad is not None and torch.isnan(param.grad).any():
print(f"Parameter {name} values: {param.data}")
print(f"Parameter {name} gradients: {param.grad}")
raise ValueError("NaN gradient detected")
@ -179,7 +194,7 @@ if __name__ == "__main__":
parser.add_argument("--out_dir", type=str, default="out")
# 若要以最快速度实现zero则epochs设置为1轮否则应当利用有限的数据训练2~6个epochs。
parser.add_argument("--epochs", type=int, default=3)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--batch_size", type=int, default=8)
parser.add_argument("--learning_rate", type=float, default=2e-4)
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu") #如果GPU可用则使用GPU否则使用CPU。
parser.add_argument("--dtype", type=str, default="bfloat16")
@ -193,9 +208,9 @@ if __name__ == "__main__":
parser.add_argument("--log_interval", type=int, default=100) #日志打印间隔,用于控制日志打印的频率。
parser.add_argument("--save_interval", type=int, default=100) #模型保存间隔,用于控制模型保存的频率。
parser.add_argument('--local_rank', type=int, default=-1) #本地进程编号,用于分布式训练。
parser.add_argument('--dim', default=4096, type=int) #模型维度,用于控制模型的大小。
parser.add_argument('--dim', default=2048, type=int) #模型维度,用于控制模型的大小。
parser.add_argument('--n_layers', default=32, type=int) #层数,用于控制模型层数。
parser.add_argument('--max_seq_len', default=2048, type=int) #最大序列长度,用于控制输入序列的最大长度。
parser.add_argument('--max_seq_len', default=1024, type=int) #最大序列长度,用于控制输入序列的最大长度。
parser.add_argument('--use_moe', default=False, type=bool) #是否使用MOE用于控制是否使用MOE。
parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能使用固定值1e-4替代") #禁用数据库功能,启用特殊模式
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") #数据路径,用于控制数据集的路径。
@ -203,9 +218,9 @@ if __name__ == "__main__":
args = parser.parse_args()
lm_config = LMConfig(
dim=args.dim,
n_layers=args.n_layers,
max_seq_len=args.max_seq_len,
dim=args.dim,
n_layers=args.n_layers,
max_seq_len=args.max_seq_len,
use_moe=args.use_moe,
disable_db=args.disable_db # 添加禁用数据库参数
) #创建LMConfig对象用于控制模型配置。
@ -240,11 +255,11 @@ if __name__ == "__main__":
if args.use_wandb and (not ddp or ddp_local_rank == 0):
import wandb
# Merge args and lm_config parameters for wandb config
config = vars(args).copy()
config.update(lm_config.__dict__)
wandb.init(project=args.wandb_project, name=args.wandb_run_name, config=config)
else:
wandb = None
@ -267,8 +282,9 @@ if __name__ == "__main__":
if ddp:
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
model = DistributedDataParallel(model, device_ids=[ddp_local_rank])
# 添加find_unused_parameters=True参数解决未使用参数的问题
model = DistributedDataParallel(model, device_ids=[ddp_local_rank], find_unused_parameters=True)
torch.autograd.set_detect_anomaly(True)
iter_per_epoch = len(train_loader)
for epoch in range(args.epochs):