diff --git a/model/LMConfig.py b/model/LMConfig.py index fb0a76d..fedfc1c 100644 --- a/model/LMConfig.py +++ b/model/LMConfig.py @@ -20,6 +20,10 @@ class LMConfig(PretrainedConfig): dropout: float = 0.0, flash_attn: bool = True, #################################################### + # DB related configurations + #################################################### + disable_db: bool = False, # 特殊模式:禁用数据库功能 + #################################################### # Here are the specific configurations of MOE # When use_moe is false, the following is invalid #################################################### @@ -47,6 +51,10 @@ class LMConfig(PretrainedConfig): self.dropout = dropout self.flash_attn = flash_attn #################################################### + # DB related configurations + #################################################### + self.disable_db = disable_db # 设置是否禁用数据库 + #################################################### # Here are the specific configurations of MOE # When use_moe is false, the following is invalid #################################################### diff --git a/model/model.py b/model/model.py index 3dc48b2..2873a77 100644 --- a/model/model.py +++ b/model/model.py @@ -94,7 +94,7 @@ class Attention(nn.Module): x: torch.Tensor, pos_cis: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, - use_cache=False, + use_cache=True, db_value=None): bsz, seq_len, _ = x.shape #bsz: 批量大小, seq_len: 序列长度, _: 隐藏维度 xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) #将输入张量x分别通过线性层wq, wk, wv进行变换,得到查询、键和值。 @@ -174,12 +174,12 @@ class CrossAttention(nn.Module): super().__init__() self.config = config self.num_heads = 8 - self.head_dim = 768 // self.num_heads - self.to_q = nn.Linear(768, 768, bias=False) - self.to_k = nn.Linear(768, 768, bias=False) - self.to_v = nn.Linear(768, 768, bias=False) + self.head_dim = self.config.dim // self.num_heads + self.to_q = nn.Linear(self.config.dim, self.config.dim, bias=False) + self.to_k = nn.Linear(self.config.dim, self.config.dim, bias=False) + self.to_v = nn.Linear(self.config.dim, self.config.dim, bias=False) - self.to_out = nn.Linear(768, 768, bias=False) + self.to_out = nn.Linear(self.config.dim, self.config.dim, bias=False) def forward(self, x, db, context_mask=None, pos_emb=None): batch_size = x.size(0) @@ -205,7 +205,7 @@ class CrossAttention(nn.Module): context = torch.matmul(attn_weights, v) - context = context.transpose(1, 2).contiguous().view(batch_size, -1, 768) + context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.config.dim) context = self.to_out(context) @@ -373,7 +373,7 @@ class MiniMindBlock(nn.Module): # self.product_key_topk = min(16, self.num_keys) # 确保不超过num_keys # self.num_experts_per_head_topk = 1 # 最终每个头选取的专家数 - def forward(self, x,db_value, pos_cis, past_key_value=None, use_cache=False): + def forward(self, x, db_value, pos_cis, past_key_value=None, use_cache=True): # import pdb;pdb.set_trace() # db_value = None @@ -426,7 +426,7 @@ class MiniMindBlock(nn.Module): db_value=db_value ) - h_attn = self.cross_att(h_attn,db_value) + h_attn = self.cross_att(h_attn, db_value) # 残差连接 h = x + h_attn @@ -523,19 +523,36 @@ class MiniMindLM(PreTrainedModel): self.norm = RMSNorm(params.dim, eps=params.norm_eps) self.output = nn.Linear(params.dim, params.vocab_size, bias=False) self.tok_embeddings.weight = self.output.weight - self.downsample_v = nn.Sequential( - nn.Conv1d(511*8,128*8,kernel_size=1,padding='same'), - nn.Conv1d(128*8,128,kernel_size=1,padding='same'), - nn.Conv1d(128,8,kernel_size=1,padding='same') + + # Calculate input dimension + input_dim = (self.params.max_seq_len-1)*self.params.n_layers + # Use a bottleneck architecture to reduce parameters + bottleneck_dim = 256 # Significantly smaller bottleneck dimension + + # Factorized shared downsampling using two smaller convolutions + self.shared_downsample = nn.Sequential( + # First reduce input dimension to bottleneck + nn.Conv1d(input_dim, bottleneck_dim, kernel_size=1, padding='same'), + nn.ReLU(), # Non-linearity to improve representation capacity + # Then expand to target dimension + nn.Conv1d(bottleneck_dim, 128*8, kernel_size=1, padding='same') ) - self.downsample_q = nn.Sequential( - nn.Conv1d(511*8,128*8,kernel_size=1,padding='same'), - nn.Conv1d(128*8,512,kernel_size=1,padding='same') + + # Specific layers for v path + self.downsample_v_specific = nn.Sequential( + nn.Conv1d(128*8, 128, kernel_size=1, padding='same'), + nn.Conv1d(128, 8, kernel_size=1, padding='same') + ) + + # Specific layers for q path + self.downsample_q_specific = nn.Sequential( + nn.Conv1d(128*8, 512, kernel_size=1, padding='same') ) self.register_buffer("pos_cis", precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta), persistent=False) self.OUT = CausalLMOutputWithPast() + self.params = params def forward(self, input_ids: Optional[torch.Tensor] = None, @@ -551,10 +568,19 @@ class MiniMindLM(PreTrainedModel): h_list = [] for l, layer in enumerate(self.layers): - index = self.extract_db.q_to_k(h) - db_value = self.extract_db.get_data(index) + # 禁用数据库模式,使用固定值替代数据库查询 + if self.params.disable_db: + # 创建一个形状为[batch_size, n_layers, dim]的tensor,所有元素值为1e-4 + batch_size = h.size(0) + db_value = torch.full((batch_size, self.n_layers, self.params.dim), 1e-4, + dtype=h.dtype, device=h.device) + else: + # 正常模式,使用数据库查询 + index = self.extract_db.q_to_k(h) + db_value = self.extract_db.get_data(index) + h, past_kv = layer( - h,db_value, pos_cis, + h, db_value, pos_cis, past_key_value=past_key_values[l], use_cache=use_cache ) @@ -562,17 +588,22 @@ class MiniMindLM(PreTrainedModel): past_kvs.append(past_kv) h_list.append(h.unsqueeze(0)) - # 使用detach()分离计算图,避免多次反向传播 - h_tensor = torch.cat(h_list,dim=0).permute(1,0,2,3) - h_tensor_detached = h_tensor.detach() - h_tensor_detached = h_tensor_detached.reshape(h_tensor_detached.shape[0],-1,768) + h_tensor = torch.cat(h_list, dim=0).permute(1, 0, 2, 3) - # 数据库更新逻辑与主计算图分离 - with torch.no_grad(): - z_v = self.downsample_v(h_tensor_detached) - z_q = self.downsample_q(h_tensor_detached) - z_k = self.extract_db.q_to_k(z_q) - self.extract_db.updata_value(z_k,z_v) + # 只在非禁用数据库模式下执行数据库更新逻辑 + if not self.params.disable_db: + # 使用detach()分离计算图,避免多次反向传播 + h_tensor_detached = h_tensor.detach() + h_tensor_detached = h_tensor_detached.reshape(h_tensor_detached.shape[0], -1, self.params.dim) + + # 数据库更新逻辑与主计算图分离 + with torch.no_grad(): + # Compute shared downsampling layer once + shared_features = self.shared_downsample(h_tensor_detached) + z_v = self.downsample_v_specific(shared_features) + z_q = self.downsample_q_specific(shared_features) + z_k = self.extract_db.q_to_k(z_q) + self.extract_db.updata_value(z_k, z_v) slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.output(self.norm(h)[:, slice_indices, :]) diff --git a/train_pretrain.py b/train_pretrain.py index 4f6a4d0..ecb8a12 100644 --- a/train_pretrain.py +++ b/train_pretrain.py @@ -197,11 +197,18 @@ if __name__ == "__main__": parser.add_argument('--n_layers', default=24, type=int) #层数,用于控制模型层数。 parser.add_argument('--max_seq_len', default=1024, type=int) #最大序列长度,用于控制输入序列的最大长度。 parser.add_argument('--use_moe', default=False, type=bool) #是否使用MOE,用于控制是否使用MOE。 + parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能,使用固定值1e-4替代") #禁用数据库功能,启用特殊模式 parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") #数据路径,用于控制数据集的路径。 parser.add_argument("--pretrained_embedding_path", type=str, default=None, help="Path to pretrained token embedding weights (.pth file)") args = parser.parse_args() - lm_config = LMConfig(dim=args.dim, n_layers=args.n_layers, max_seq_len=args.max_seq_len, use_moe=args.use_moe) #创建LMConfig对象,用于控制模型配置。 + lm_config = LMConfig( + dim=args.dim, + n_layers=args.n_layers, + max_seq_len=args.max_seq_len, + use_moe=args.use_moe, + disable_db=args.disable_db # 添加禁用数据库参数 + ) #创建LMConfig对象,用于控制模型配置。 args.save_dir = os.path.join(args.out_dir) #创建保存目录。 os.makedirs(args.save_dir, exist_ok=True) #创建保存目录。 os.makedirs(args.out_dir, exist_ok=True) #创建输出目录。 @@ -234,11 +241,10 @@ if __name__ == "__main__": if args.use_wandb and (not ddp or ddp_local_rank == 0): import wandb - # Merge args and lm_config into a single config dictionary - config = vars(args) - for key, value in vars(lm_config).items(): - config[f"lm_{key}"] = value - + # Merge args and lm_config parameters for wandb config + config = vars(args).copy() + config.update(lm_config.__dict__) + wandb.init(project=args.wandb_project, name=args.wandb_run_name, config=config) else: wandb = None