This commit is contained in:
iomgaa 2025-04-25 16:29:28 +08:00
parent 1ddfd310ec
commit e3120f5e62
3 changed files with 205 additions and 1238 deletions

1165
README.md

File diff suppressed because it is too large Load Diff

View File

@ -11,6 +11,12 @@ import torch.nn.functional as F
from torch import nn from torch import nn
from transformers import PreTrainedModel from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.modeling_outputs import CausalLMOutputWithPast
from torch import nn, einsum
from einops import rearrange, repeat
def exists(val):
return val is not None
# RMSNorm 类定义了一个用于归一化输入张量的模块。 # RMSNorm 类定义了一个用于归一化输入张量的模块。
class RMSNorm(torch.nn.Module): class RMSNorm(torch.nn.Module):
@ -158,6 +164,42 @@ class Attention(nn.Module):
return output, past_kv return output, past_kv
class CrossAttention(nn.Module):
def __init__(
self,
config
):
super().__init__()
self.config = config
self.to_q = nn.Linear(768, 768, bias=False)
self.to_k = nn.Linear(768, 768, bias=False)
self.to_v = nn.Linear(768, 768, bias=False)
def forward(self, x, db, context_mask=None, pos_emb=None):
# db = db.permute(0, 2, 1)
q = self.to_q(x)
k = self.to_k(db)
v = self.to_v(db)
if pos_emb is not None:
q = q + pos_emb
k = k + pos_emb
v = v + pos_emb
attn_scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(k.size(-1))
if context_mask is not None:
attn_scores = attn_scores.masked_fill(context_mask == 0, -1e10)
attn_weights = F.softmax(attn_scores, dim=-1)
context = torch.matmul(attn_weights, v)
return context
class FeedForward(nn.Module): class FeedForward(nn.Module):
def __init__(self, config: LMConfig): def __init__(self, config: LMConfig):
super().__init__() super().__init__()
@ -290,51 +332,136 @@ class MOEFeedForward(nn.Module):
class MiniMindBlock(nn.Module): class MiniMindBlock(nn.Module):
def __init__(self, layer_id: int, config: LMConfig, weight_down_embed=None): def __init__(self, layer_id: int, config: LMConfig):
super().__init__() super().__init__()
self.n_heads = config.n_heads self.n_heads = config.n_heads
self.dim = config.dim self.dim = config.dim
self.head_dim = config.dim // config.n_heads self.head_dim = config.dim // config.n_heads
self.attention = Attention(config) self.attention = Attention(config)
self.cross_att = CrossAttention(config)
self.layer_id = layer_id self.layer_id = layer_id
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps) self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps) self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config) self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
# Product Key 相关参数
self.weight_down_embed = weight_down_embed
# 假设num_experts是已定义的总专家数量的平方根 # 假设num_experts是已定义的总专家数量的平方根
self.num_keys = int(math.sqrt(self.weight_down_embed.num_embeddings)) if weight_down_embed is not None else 0
# 查询生成的参数 # 查询生成的参数
self.dim_key = config.dim // 2 # 一般用特征维度的一半
# 创建查询生成模块 # 创建查询生成模块
if weight_down_embed is not None: # if weight_down_embed is not None:
self.to_queries = nn.Sequential( # self.to_queries = nn.Sequential(
nn.Linear(config.dim, self.dim_key * self.n_heads * 2, bias=False), # nn.Linear(config.dim, self.dim_key * 2, bias=False),
nn.Unflatten(2, (2, self.n_heads, self.dim_key)) # 替代Rearrange # # nn.Unflatten(2, (2, self.n_heads, self.dim_key)) # 替代Rearrange
) # )
# 存储Product Keys # # 超参数
self.keys = nn.Parameter(torch.randn(self.n_heads, self.num_keys, 2, self.dim_key) * 0.02) # self.product_key_topk = min(16, self.num_keys) # 确保不超过num_keys
# self.num_experts_per_head_topk = 1 # 最终每个头选取的专家数
# 超参数
self.product_key_topk = min(16, self.num_keys) # 确保不超过num_keys
self.num_experts_per_head_topk = 1 # 最终每个头选取的专家数
def forward(self, x, pos_cis, past_key_value=None, use_cache=False): def forward(self, x,db_value, pos_cis, past_key_value=None, use_cache=False):
db_value = None # import pdb;pdb.set_trace()
# db_value = None
# 如果有weight_down_embed使用Product Key机制 # # 如果有weight_down_embed使用Product Key机制
if self.weight_down_embed is not None: # if self.weight_down_embed is not None:
# 1. 生成queries # # 1. 生成queries
queries = self.to_queries(x) # [b, n, 2, h, d] # batch_size, seq_len, dim = x.shape
queries = queries.permute(2, 0, 1, 3, 4) # [2, b, n, h, d]
# # collapse sequence dimension by averaging
# x_flat = x.mean(dim=1) # [batch_size, dim]
# queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
# queries = queries.reshape(batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
# queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
# # 2. 计算queries与keys的相似度
# sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
# # 3. 在两个子空间分别做top-k
# scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
# scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
# indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
# # 4. 组合两个子空间的分数和索引
# all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
# all_scores = all_scores.view(*all_scores.shape[:-2], -1)
# all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
# all_indices = all_indices.view(*all_indices.shape[:-2], -1)
# # 5. 最终top-k选择
# scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
# indices = all_indices.gather(-1, pk_indices)
# # 6. 从embedding中获取专家值
# # 从embedding中获取值
# flat_indices = indices.view(-1) # 将索引展平为一维张量
# db_values = self.weight_down_embed(flat_indices)
# # 重塑回原始形状
# db_value = db_values.view(batch_size, -1, dim)
# 注意力计算
h_attn, past_kv = self.attention(
self.attention_norm(x),
pos_cis,
past_key_value=past_key_value,
use_cache=use_cache,
db_value=db_value
)
h_attn = self.cross_att(h_attn,db_value)
# 残差连接
h = x + h_attn
# 前馈神经网络
out = h + self.feed_forward(self.ffn_norm(h))
return out, past_kv
class ExtractDB(nn.Module):
def __init__(self,params):
# 修改专家数量和知识维度,确保能开方
super().__init__()
self.batch_size = None
self.dim = params.dim
self.dim_key = self.dim // 2
self.num_experts = 10 * 10 # 1M专家确保是完全平方数
# 将knowledge_dim设置为与head_dim相同以便在attention中直接使用
self.head_dim = params.dim // params.n_heads
self.knowledge_dim = 8*params.dim
# 使用CPU上的普通tensor替代nn.Embedding
self.register_buffer('weight_down_embed_cpu', torch.randn(self.num_experts, self.knowledge_dim,
dtype=torch.float32,
device='cpu') * 0.02,
persistent=True)
self.num_keys = int(math.sqrt(self.num_experts)) if self.num_experts > 0 else 0
self.product_key_topk = min(16, self.num_keys)
self.keys = nn.Parameter(torch.randn(self.num_keys, 2, self.dim_key) * 0.02)
self.num_experts_per_head_topk = 1
self.to_queries = nn.Sequential(
nn.Linear(params.dim, self.dim_key * 2, bias=False),
)
def q_to_k(self,x):
# 1. 生成queries
self.batch_size, seq_len, dim = x.shape
# collapse sequence dimension by averaging
x_flat = x.mean(dim=1) # [batch_size, dim]
queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
queries = queries.reshape(self.batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
# 2. 计算queries与keys的相似度 # 2. 计算queries与keys的相似度
sim = torch.einsum('p b n h d, h k p d -> p b n h k', queries, self.keys) sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
# 3. 在两个子空间分别做top-k # 3. 在两个子空间分别做top-k
scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)] scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
@ -351,41 +478,26 @@ class MiniMindBlock(nn.Module):
# 5. 最终top-k选择 # 5. 最终top-k选择
scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1) scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
indices = all_indices.gather(-1, pk_indices) indices = all_indices.gather(-1, pk_indices)
# 6. 从embedding中获取专家值
# [b, n, h, k] -> [b, n, h, k, 1] -> [b, n, h, k, d]
indices_expanded = indices.unsqueeze(-1).expand(-1, -1, -1, -1, self.weight_down_embed.embedding_dim)
# 将索引从3D展平为1D以便gather操作
batch_size, seq_len = x.shape[0], x.shape[1]
flat_indices = indices.view(-1) flat_indices = indices.view(-1)
return flat_indices
# 从embedding中获取值
db_values = self.weight_down_embed(flat_indices) def get_data(self, index):
# 将需要的embedding从CPU移到当前设备上
# 重塑回原始形状 device = index.device
db_value = db_values.view(batch_size, seq_len, self.n_heads, # 根据索引获取对应的embedding
self.num_experts_per_head_topk, -1) db_values = self.weight_down_embed_cpu[index.cpu()].to(device)
db_value = db_values.view(self.batch_size, -1, self.dim)
# 使用分数加权 return db_value
db_value = db_value * F.relu(scores.unsqueeze(-1))
def updata_value(self, k, v):
# 合并多个专家的输出(如果每个头有多个专家) # 更新CPU上的张量值
if self.num_experts_per_head_topk > 1: k_cpu = k.cpu()
db_value = db_value.sum(dim=3) # [b, n, h, d] v_cpu = v.view(v.size(0), -1).cpu()
# 注意力计算 # 直接更新内存中的值
h_attn, past_kv = self.attention( self.weight_down_embed_cpu[k_cpu] = v_cpu
self.attention_norm(x),
pos_cis,
past_key_value=past_key_value,
use_cache=use_cache,
db_value=db_value
)
h = x + h_attn
out = h + self.feed_forward(self.ffn_norm(h))
return out, past_kv
class MiniMindLM(PreTrainedModel): class MiniMindLM(PreTrainedModel):
config_class = LMConfig config_class = LMConfig
@ -396,23 +508,23 @@ class MiniMindLM(PreTrainedModel):
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim) self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.dropout = nn.Dropout(params.dropout) self.dropout = nn.Dropout(params.dropout)
# 移除旧的weight_down_embed声明
# 修改专家数量和知识维度,确保能开方 self.extract_db = ExtractDB(self.params)
self.num_experts = 1000 * 1000 # 1M专家确保是完全平方数
# 将knowledge_dim设置为与head_dim相同以便在attention中直接使用
self.head_dim = params.dim // params.n_heads
self.knowledge_dim = self.head_dim
# 定义weight_down_embed用于存储专家知识
self.weight_down_embed = nn.Embedding(self.num_experts, self.knowledge_dim)
# 初始化embedding权重
nn.init.normal_(self.weight_down_embed.weight, std=0.02)
# 将self.weight_down_embed传递给每个MiniMindBlock # 将self.weight_down_embed传递给每个MiniMindBlock
self.layers = nn.ModuleList([MiniMindBlock(l, params, self.weight_down_embed) for l in range(self.n_layers)]) self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
self.norm = RMSNorm(params.dim, eps=params.norm_eps) self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False) self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
self.tok_embeddings.weight = self.output.weight self.tok_embeddings.weight = self.output.weight
self.downsample_v = nn.Sequential(
nn.Conv1d(511*8,128*8,kernel_size=1,padding='same'),
nn.Conv1d(128*8,128,kernel_size=1,padding='same'),
nn.Conv1d(128,8,kernel_size=1,padding='same')
)
self.downsample_q = nn.Sequential(
nn.Conv1d(511*8,128*8,kernel_size=1,padding='same'),
nn.Conv1d(128*8,512,kernel_size=1,padding='same')
)
self.register_buffer("pos_cis", self.register_buffer("pos_cis",
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta), precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta),
persistent=False) persistent=False)
@ -429,13 +541,29 @@ class MiniMindLM(PreTrainedModel):
h = self.dropout(self.tok_embeddings(input_ids)) h = self.dropout(self.tok_embeddings(input_ids))
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)] pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
past_kvs = [] past_kvs = []
h_list = []
for l, layer in enumerate(self.layers): for l, layer in enumerate(self.layers):
index = self.extract_db.q_to_k(h)
db_value = self.extract_db.get_data(index)
h, past_kv = layer( h, past_kv = layer(
h, pos_cis, h,db_value, pos_cis,
past_key_value=past_key_values[l], past_key_value=past_key_values[l],
use_cache=use_cache use_cache=use_cache
) )
past_kvs.append(past_kv) past_kvs.append(past_kv)
h_list.append(h.unsqueeze(0))
h_tensor = torch.cat(h_list,dim=0).permute(1,0,2,3)
h_tensor = h_tensor.reshape(h_tensor.shape[0],-1,768)
z_v = self.downsample_v(h_tensor)
z_q = self.downsample_q(h_tensor)
z_k = self.extract_db.q_to_k(z_q)
self.extract_db.updata_value(z_k,z_v)
#更新数据库
# q,v = f(h_list)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.output(self.norm(h)[:, slice_indices, :]) logits = self.output(self.norm(h)[:, slice_indices, :])

View File

@ -138,7 +138,7 @@ if __name__ == "__main__":
parser.add_argument("--learning_rate", type=float, default=5e-4) parser.add_argument("--learning_rate", type=float, default=5e-4)
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu") #如果GPU可用则使用GPU否则使用CPU。 parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu") #如果GPU可用则使用GPU否则使用CPU。
parser.add_argument("--dtype", type=str, default="bfloat16") parser.add_argument("--dtype", type=str, default="bfloat16")
parser.add_argument("--use_wandb", default=True, action="store_true") parser.add_argument("--use_wandb", default=False, action="store_true")
parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain") parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain")
parser.add_argument("--num_workers", type=int, default=8) parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--ddp", action="store_true") parser.add_argument("--ddp", action="store_true")
@ -148,9 +148,9 @@ if __name__ == "__main__":
parser.add_argument("--log_interval", type=int, default=100) #日志打印间隔,用于控制日志打印的频率。 parser.add_argument("--log_interval", type=int, default=100) #日志打印间隔,用于控制日志打印的频率。
parser.add_argument("--save_interval", type=int, default=100) #模型保存间隔,用于控制模型保存的频率。 parser.add_argument("--save_interval", type=int, default=100) #模型保存间隔,用于控制模型保存的频率。
parser.add_argument('--local_rank', type=int, default=-1) #本地进程编号,用于分布式训练。 parser.add_argument('--local_rank', type=int, default=-1) #本地进程编号,用于分布式训练。
parser.add_argument('--dim', default=1024, type=int) #模型维度,用于控制模型的大小。 parser.add_argument('--dim', default=768, type=int) #模型维度,用于控制模型的大小。
parser.add_argument('--n_layers', default=24, type=int) #层数,用于控制模型层数。 parser.add_argument('--n_layers', default=8, type=int) #层数,用于控制模型层数。
parser.add_argument('--max_seq_len', default=1024, type=int) #最大序列长度,用于控制输入序列的最大长度。 parser.add_argument('--max_seq_len', default=512, type=int) #最大序列长度,用于控制输入序列的最大长度。
parser.add_argument('--use_moe', default=False, type=bool) #是否使用MOE用于控制是否使用MOE。 parser.add_argument('--use_moe', default=False, type=bool) #是否使用MOE用于控制是否使用MOE。
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") #数据路径,用于控制数据集的路径。 parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") #数据路径,用于控制数据集的路径。
args = parser.parse_args() args = parser.parse_args()