8 Commits

Author SHA1 Message Date
44fe6259ec Experiment 1.4.7: Memory Bank文本初始化 + 部分冻结机制
## 主要改进
- 🔥 Memory Bank文本初始化:使用sentence_trex_data.json真实文本数据
- 🔥 部分冻结机制:新增freeze_ratio=0.2,保护20%重要记忆条目
- 📊 性能提升:推理Loss改善5.5% (2.4699 vs 2.6142)

## 核心变更
### model/LMConfig.py
- 新增freeze_ratio参数,支持Memory Bank条目冻结控制

### model/model_memory.py
- 实现freeze_mask机制,随机冻结20%记忆条目
- EMA更新过滤:只更新未冻结条目,保护重要知识
- 统计信息增强:新增冻结条目数量和比例监控

### train_pretrain_accelerate.py
- model_memory完整初始化支持:文本数据处理、缓存机制
- sentence_trex_data.json文本tokenization和长度处理
- memory_bank_init缓存优化,提升重复实验效率

### 实验文档
- experiment/EXPERIMENT_1_4_7.md:完整实验记录和结果分析
- run_file/experiment_1_4_7.sh:实验执行脚本
- CLAUDE.md:架构设计防护规则和模型版本管理规范

## 实验结果
 文本初始化效果验证:Loss性能改善5.5%
 冻结机制技术实现:209,715/1,048,576条目成功冻结
 生成连贯性仍需改进:架构级问题待解决

## 下一步优化
- EOS token控制修复
- Cross-attention权重优化
- 生成参数调优(temperature/top_p)

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-19 19:32:52 +08:00
cf9acb2064 Experiment 1.4.6: Token-based Memory架构实现
完成实验1.4.6的Token-based Memory架构,实现以下改进:
- 记忆库从连续特征向量存储改为离散token ID存储
- 实现双向编解码机制(embedding→特征→output→token)
- 优化EMA更新参数:ema_decay=0.9, ema_update_freq=5
- 显著降低GPU显存使用:从23GB降至13GB(-43%)
- 推理Loss从2.6382降至2.6142(改善0.9%)

技术亮点:
- 有效表示维度从128提升至4096(32x增强)
- 稀疏缓存机制避免内存爆炸
- 立即压缩策略平衡显存和性能
- 人类可解释的记忆内容

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-08-14 23:04:52 +08:00
a7fe947a35 Experiment 1.4.5:使用VQ-VAE的EMA来更新数据库 2025-08-09 10:47:35 +08:00
fcab661af9 更新了配置文件 2025-06-30 19:51:07 +08:00
770c34f0e3 DynamicKV-LLM Pretrain v1.2.1 2025-06-08 02:20:36 +00:00
000e17a93f 修正了key分解、负载均衡等错误 2025-06-06 11:25:59 +08:00
Gary
d7fe504e1e update 2025-05-16 08:38:59 +00:00
089afd6728 DynamicKV-LLM Pretrain v1.1.0 2025-05-14 00:01:40 +08:00