Compare commits

..

No commits in common. "64e92473c30e277851dfbc7097285a8d3c8a2a38" and "67c632d010198a12d1b70bde4ea3d5127dbeac5d" have entirely different histories.

5 changed files with 839 additions and 1175 deletions

4
.gitignore vendored
View File

@ -4,6 +4,4 @@
wandb/
**/*.log
models/sentence_transformers/
models/sentence_transformers_cache/
**/*.pyc
qwen2-1.7B/
models/sentence_transformers_cache/

View File

@ -4,35 +4,10 @@
1. **句子提取**:从 TREx 数据集提取三元组并转换为自然语言句子
2. **LLM 处理**:使用 ollama qwen3:4b 模型进行句子修正和重要性评分
## 🆕 防卡死机制
为了解决LLM处理时可能出现的卡死问题新增了以下功能
### 超时和重试机制
- **超时时间**每个LLM请求60秒超时
- **重试机制**失败后最多重试2次采用指数退避策略
- **并发控制**降低并发数至4个减少服务器压力
### 心跳监控系统
- **实时监控**每30秒检查一次LLM响应状态
- **异常警告**超过30秒无成功响应时发出警告
- **服务检测**自动检查ollama服务状态
- **详细统计**:实时显示成功率、超时率等统计信息
### 日志系统
- **详细日志**:所有操作都记录在 `logs/` 目录下
- **双重输出**:同时输出到日志文件和控制台
- **时间戳标记**:日志文件包含启动时间戳
### 改进的错误处理
- **异常恢复**LLM处理失败时使用原句子和默认评分
- **状态监控**处理前检查ollama服务状态
- **批次间休息**批次之间休息5秒避免过度压力
## 安装依赖
```bash
pip install agno asyncio pydantic requests
pip install agno asyncio pydantic
```
确保已安装并启动 ollama并下载 qwen3:4b 模型:
@ -75,52 +50,24 @@ python trex_to_sentences_simple.py --step llm --sentences_json my_sentences.json
## 输出文件
**注意:所有输出文件都会自动保存在相应目录中**
**注意:所有输出文件都会自动保存在 `./output/` 目录中**
### 句子提取输出
### 步骤1输出
- `output/extracted_sentences.json`: 提取的原始句子,包含元数据
### LLM处理输出
### 步骤2输出
- `output/{output_file}.txt`: 修正后的句子文本文件
- `output/{output_file}.json`: 完整的处理结果(包含原句、修正句、评分)
- `output/{output_file}_sorted_by_importance.txt`: 按重要性评分排序的句子
### 检查点文件
- `output/{output_file}_checkpoint_{数量}.json`: 每1000条句子自动保存的检查点
### 日志文件
- `logs/trex_processor_{时间戳}.log`: 详细的处理日志
## 🆕 故障诊断
### 如果遇到卡死问题:
1. **检查日志文件**:查看 `logs/` 目录下的最新日志
2. **观察心跳监控**:注意控制台的心跳警告信息
3. **检查ollama服务**
```bash
ps aux | grep ollama
curl http://localhost:11434/api/tags
```
4. **重启ollama服务**(如果需要):
```bash
pkill ollama
ollama serve &
```
### 常见警告信息:
- `⚠️ 心跳检测`: 30秒无成功响应正常情况下会自动恢复
- `❌ 严重警告`: 90秒无成功响应可能需要检查服务
- `💀 Ollama服务异常`: ollama服务可能已停止
- `💀 致命错误`: 连续多次警告(建议重启程序)
- `output/{output_file}_checkpoint_{数量}.json`: 每2000条句子自动保存的检查点
## 检查点恢复机制
- 步骤2会自动检测已有的检查点文件`output/` 目录中)
- 只处理尚未处理的句子,避免重复工作
- 如果所有句子都已处理,会直接生成最终输出文件
- 中断后重新运行会自动从最新检查点继续
## 示例工作流
@ -137,18 +84,14 @@ python trex_to_sentences_simple.py --step llm
## 性能特点
- **保守的并发**: 最大4个并发LLM请求降低卡死风险
- **检查点保存**: 每1000条句子自动保存支持断点续传
- **智能监控**: 详细的处理进度和时间预估
- **健壮的错误处理**: LLM请求失败时使用原句子和默认评分
- **服务监控**: 自动检测ollama服务状态
- **并发处理**: 最大54个并发LLM请求
- **检查点保存**: 每2000条句子自动保存支持断点续传
- **进度显示**: 详细的处理进度和时间预估
- **错误处理**: LLM请求失败时使用原句子和默认评分
## 注意事项
1. 首次运行步骤2前必须先完成步骤1
2. 检查点文件会占用额外磁盘空间(每个都包含所有已处理数据)
2. 检查点文件会占用额外磁盘空间(每个都包含所有已处理数据)
3. LLM处理速度取决于模型性能和网络状况
4. 建议先用`--max_files`参数测试小批量数据
5. **新增**:如果遇到卡死,查看日志文件和心跳监控信息
6. **新增**程序会自动检测并报告ollama服务状态
7. **新增**:所有处理过程都有详细日志记录,便于问题诊断
4. 建议先用`--max_files`参数测试小批量数据

View File

@ -1,225 +0,0 @@
#!/usr/bin/env python3
"""
JSON文件合并脚本
读取多个JSON文件并合并为一个JSON文件
"""
import json
import os
from typing import Dict, List, Any, Union
# 需要合并的JSON文件列表
JSON_FILES_TO_MERGE = [
"output/trex_sentences_enhanced_checkpoint_360000.json"
]
for i in range(1, 1010):
JSON_FILES_TO_MERGE.append(f"output/trex_sentences_enhanced_batch_{i}.json")
def load_json_file(file_path: str) -> Union[Dict, List, None]:
"""加载JSON文件"""
if not os.path.exists(file_path):
print(f"警告: 文件 {file_path} 不存在")
return None
try:
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
print(f"成功加载: {file_path}")
return data
except json.JSONDecodeError as e:
print(f"错误: 无法解析JSON文件 {file_path} - {e}")
return None
except Exception as e:
print(f"错误: 读取文件 {file_path} 失败 - {e}")
return None
def merge_json_data(data1: Union[Dict, List], data2: Union[Dict, List]) -> Union[Dict, List]:
"""合并两个JSON数据结构"""
# 如果两个都是列表,直接合并
if isinstance(data1, list) and isinstance(data2, list):
print(f"合并两个列表: {len(data1)} + {len(data2)} = {len(data1) + len(data2)}")
return data1 + data2
# 如果两个都是字典
elif isinstance(data1, dict) and isinstance(data2, dict):
print("合并两个字典结构")
merged = data1.copy()
# 特殊处理:如果都有'sentences'字段且为列表合并sentences
if 'sentences' in data1 and 'sentences' in data2:
if isinstance(data1['sentences'], list) and isinstance(data2['sentences'], list):
print(f"合并sentences字段: {len(data1['sentences'])} + {len(data2['sentences'])} = {len(data1['sentences']) + len(data2['sentences'])}")
merged['sentences'] = data1['sentences'] + data2['sentences']
# 更新metadata if exists
if 'metadata' in merged:
if isinstance(merged['metadata'], dict):
merged['metadata']['total_sentences'] = len(merged['sentences'])
merged['metadata']['merged_from'] = [os.path.basename(f) for f in JSON_FILES_TO_MERGE if os.path.exists(f)]
# 合并其他字段
for key, value in data2.items():
if key != 'sentences' and key not in merged:
merged[key] = value
return merged
# 普通字典合并
for key, value in data2.items():
if key in merged:
# 如果key重复且都是列表合并列表
if isinstance(merged[key], list) and isinstance(value, list):
merged[key] = merged[key] + value
# 如果key重复且都是字典递归合并
elif isinstance(merged[key], dict) and isinstance(value, dict):
merged[key] = merge_json_data(merged[key], value)
else:
# 其他情况保留第二个文件的值
merged[key] = value
print(f"字段 '{key}' 被覆盖")
else:
merged[key] = value
return merged
# 类型不匹配的情况,创建一个包含两者的新结构
else:
print("数据类型不匹配,创建包含两者的新结构")
return {
"data_from_save.json": data1,
"data_from_save2.json": data2,
"merged_at": "test.py"
}
def save_merged_json(data: Union[Dict, List], output_path: str):
"""保存合并后的JSON数据"""
try:
# 确保输出目录存在
os.makedirs(os.path.dirname(output_path), exist_ok=True)
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(data, f, ensure_ascii=False, indent=2)
print(f"合并结果已保存到: {output_path}")
# 显示统计信息
if isinstance(data, dict):
if 'sentences' in data and isinstance(data['sentences'], list):
print(f"总计句子数: {len(data['sentences'])}")
print(f"总计字段数: {len(data)}")
elif isinstance(data, list):
print(f"总计列表项数: {len(data)}")
except Exception as e:
print(f"错误: 保存文件失败 - {e}")
def remove_duplicates_from_sentences(data: Union[Dict, List]) -> Union[Dict, List]:
"""从合并结果中移除重复的句子(基于句子内容)"""
if isinstance(data, dict) and 'sentences' in data:
if isinstance(data['sentences'], list):
original_count = len(data['sentences'])
seen_sentences = set()
unique_sentences = []
for item in data['sentences']:
if isinstance(item, dict):
# 如果是字典使用sentence字段或corrected_sentence字段作为唯一标识
sentence_key = item.get('sentence') or item.get('corrected_sentence') or item.get('original_sentence')
elif isinstance(item, str):
sentence_key = item
else:
sentence_key = str(item)
if sentence_key and sentence_key not in seen_sentences:
seen_sentences.add(sentence_key)
unique_sentences.append(item)
data['sentences'] = unique_sentences
# 更新metadata
if 'metadata' in data and isinstance(data['metadata'], dict):
data['metadata']['total_sentences'] = len(unique_sentences)
data['metadata']['duplicates_removed'] = original_count - len(unique_sentences)
print(f"去重完成: {original_count} -> {len(unique_sentences)} (移除了 {original_count - len(unique_sentences)} 个重复项)")
return data
def merge_multiple_json_data(data_list: List[Union[Dict, List]]) -> Union[Dict, List]:
"""合并多个JSON数据结构"""
if not data_list:
return {}
if len(data_list) == 1:
return data_list[0]
print(f"准备合并 {len(data_list)} 个JSON数据结构")
# 从第一个数据开始,逐步合并其他数据
merged_data = data_list[0]
for i, data in enumerate(data_list[1:], 1):
print(f"正在合并第 {i+1} 个数据结构...")
merged_data = merge_json_data(merged_data, data)
return merged_data
def main():
"""主函数"""
print("=== JSON文件合并脚本 ===")
# 输出路径
output_path = "output/merged.json"
print(f"准备合并以下文件:")
for i, file_path in enumerate(JSON_FILES_TO_MERGE, 1):
print(f" {i}. {file_path}")
print(f"输出文件: {output_path}")
print()
# 加载所有文件
loaded_data = []
successfully_loaded = []
for file_path in JSON_FILES_TO_MERGE:
data = load_json_file(file_path)
if data is not None:
loaded_data.append(data)
successfully_loaded.append(file_path)
# 检查是否至少有一个文件加载成功
if not loaded_data:
print("错误: 没有文件能够成功加载,退出")
return
print(f"成功加载了 {len(loaded_data)} 个文件:")
for file_path in successfully_loaded:
print(f"{file_path}")
if len(loaded_data) < len(JSON_FILES_TO_MERGE):
failed_count = len(JSON_FILES_TO_MERGE) - len(loaded_data)
print(f"警告: {failed_count} 个文件加载失败")
print()
# 合并所有数据
if len(loaded_data) == 1:
print("只有一个文件可用,直接使用...")
merged_data = loaded_data[0]
else:
print("开始合并所有文件...")
merged_data = merge_multiple_json_data(loaded_data)
# 去重处理
print("\n检查并去除重复项...")
merged_data = remove_duplicates_from_sentences(merged_data)
# 保存合并结果
print("\n保存合并结果...")
save_merged_json(merged_data, output_path)
print("\n=== 合并完成 ===")
print(f"合并了 {len(successfully_loaded)} 个文件的数据")
if __name__ == "__main__":
main()

File diff suppressed because it is too large Load Diff

View File

@ -92,346 +92,316 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
from sentence_transformers import SentenceTransformer
import os
# 聚类参数(需要提前定义用于缓存检查)
Logger(f"Loading database initialization data from {database_init_path}")
# 1. 加载JSON文件并转换为字典
with open(database_init_path, 'r', encoding='utf-8') as f:
database_data = json.load(f)
# 提取sentences列表
sentences_data = database_data.get('sentences', [])
Logger(f"Loaded {len(sentences_data)} sentences from database")
# 2. 按照importance_score进行排序从高到低
sorted_sentences = sorted(sentences_data, key=lambda x: x.get('importance_score', 0.0), reverse=True)
Logger(f"Sorted sentences by importance score (highest: {sorted_sentences[0].get('importance_score', 0.0)}, lowest: {sorted_sentences[-1].get('importance_score', 0.0)})")
# 3. 下载并初始化本地嵌入模型
embedding_model_name = "sentence-transformers/all-mpnet-base-v2" # 轻量级但效果好的模型
embedding_model_dir = "./models/sentence_transformers/models--sentence-transformers--all-mpnet-base-v2"
embedding_cache_dir = "./models/sentence_transformers/cache"
os.makedirs(embedding_cache_dir, exist_ok=True)
Logger(f"Loading embedding model: {embedding_model_name}")
try:
embedding_model = SentenceTransformer(embedding_model_dir, cache_folder=embedding_cache_dir)
Logger("Embedding model loaded successfully")
except Exception as e:
Logger(f"Failed to load embedding model: {e}")
Logger("Falling back to random embeddings")
embedding_model = None
# 4. 对每个corrected_sentence进行嵌入和token长度计算
Logger("Processing sentences for embeddings and token lengths...")
# 提取所有句子
sentences = [sentence_data.get('corrected_sentence', '') for sentence_data in sorted_sentences]
# 批量计算token长度
Logger("Computing token lengths...")
token_lengths = []
for sentence in sentences:
tokens = tokenizer.encode(sentence, add_special_tokens=False)
token_lengths.append(len(tokens))
# 批量计算嵌入 - 大幅提升速度
Logger("Computing embeddings in batches...")
embeddings_list = []
batch_size = 256 # 可以根据GPU内存调整
if embedding_model is not None:
try:
for i in range(0, len(sentences), batch_size):
batch_sentences = sentences[i:i+batch_size]
batch_embeddings = embedding_model.encode(
batch_sentences,
convert_to_tensor=False,
show_progress_bar=True if i == 0 else False,
batch_size=batch_size
)
embeddings_list.extend(batch_embeddings)
if (i + batch_size) % (batch_size * 10) == 0:
Logger(f"Processed {min(i + batch_size, len(sentences))}/{len(sentences)} sentences")
Logger("Batch embedding computation completed")
except Exception as e:
Logger(f"Error in batch encoding: {e}")
Logger("Falling back to random embeddings")
embeddings_list = [np.random.randn(384).astype(np.float32) for _ in sentences]
else:
# 使用随机嵌入
embeddings_list = [np.random.randn(384).astype(np.float32) for _ in sentences]
# 创建处理后的句子列表
processed_sentences = []
for i, (sentence_data, embedding, token_length) in enumerate(zip(sorted_sentences, embeddings_list, token_lengths)):
processed_sentences.append({
'sentence': sentence_data.get('corrected_sentence', ''),
'importance_score': sentence_data.get('importance_score', 0.0),
'token_length': token_length,
'embedding': embedding, # Convert numpy array to list
'original_index': i
})
# # Create a JSON-serializable version for saving
# json_serializable_sentences = []
# for sentence in processed_sentences:
# json_sentence = sentence.copy()
# # Convert embedding to list if it's a numpy array
# if hasattr(json_sentence['embedding'], 'tolist'):
# json_sentence['embedding'] = json_sentence['embedding'].tolist()
# json_serializable_sentences.append(json_sentence)
# json.dump(json_serializable_sentences, open('processed_sentences.json', 'w', encoding='utf-8'))
# processed_sentences = json.load(open('processed_sentences.json', 'r', encoding='utf-8'))
# 转换为numpy数组以便后续处理
embeddings_array = np.array(embeddings_list)
token_lengths_array = np.array(token_lengths)
Logger(f"Embedding processing completed:")
Logger(f" - Total sentences: {len(processed_sentences)}")
Logger(f" - Embedding shape: {embeddings_array.shape}")
Logger(f" - Average token length: {np.mean(token_lengths_array):.2f}")
Logger(f" - Token length range: {np.min(token_lengths_array)} - {np.max(token_lengths_array)}")
# 2. 聚类处理 - 优化版本
Logger("Starting optimized clustering process...")
# 聚类参数
knowledge_num = args.knowledge_num
knowledge_length = args.knowledge_length
min_tokens = int(0.85 * knowledge_length)
max_tokens = int(0.95 * knowledge_length)
# 检查是否使用缓存(提前检查,避免不必要的数据处理)
cache_dir = os.path.dirname(args.cluster_cache_path)
if cache_dir:
os.makedirs(cache_dir, exist_ok=True)
# 优化1: 预计算所有嵌入的相似度矩阵(如果数据量不太大)
if len(processed_sentences) <= 10000: # 只有在数据量不太大时才预计算
Logger("Pre-computing similarity matrix for faster clustering...")
embeddings_matrix = np.array([s['embedding'] for s in processed_sentences])
similarity_matrix = cosine_similarity(embeddings_matrix)
Logger(f"Similarity matrix computed: {similarity_matrix.shape}")
else:
similarity_matrix = None
embeddings_matrix = np.array([s['embedding'] for s in processed_sentences])
clustered_tensor = None
clustered_rows = []
remaining_indices = list(range(len(processed_sentences))) # 使用索引而不是对象
# 尝试加载缓存的聚类结果
if not args.recompute_clusters and os.path.exists(args.cluster_cache_path):
try:
Logger(f"Loading cached cluster results from {args.cluster_cache_path}")
clustered_tensor = torch.load(args.cluster_cache_path)
# 验证缓存文件的形状是否可用
cached_knowledge_num, cached_knowledge_length = clustered_tensor.shape
if cached_knowledge_length == knowledge_length:
if cached_knowledge_num >= knowledge_num:
# 缓存足够大,可以截取使用
clustered_tensor = clustered_tensor[:knowledge_num, :]
Logger(f"Successfully loaded cached clusters with shape {clustered_tensor.shape}")
Logger(f"Truncated from cached shape ({cached_knowledge_num}, {cached_knowledge_length}) to required shape ({knowledge_num}, {knowledge_length})")
Logger("Skipping database initialization and clustering - using cached results")
else:
# 缓存太小,需要重新计算
Logger(f"Cached knowledge_num ({cached_knowledge_num}) < required knowledge_num ({knowledge_num}), recomputing...")
clustered_tensor = None
Logger(f"Target: {knowledge_num} clusters, each with {min_tokens}-{max_tokens} tokens")
# 选择聚类算法
if args.fast_clustering and len(processed_sentences) > 5000:
Logger("Using ultra-fast approximate clustering algorithm...")
# 超快速聚类:随机采样 + 批量处理
import random
random.seed(42) # 确保可重现性
# 按重要性分层采样
high_importance = [i for i, s in enumerate(processed_sentences) if s['importance_score'] > 0.7]
medium_importance = [i for i, s in enumerate(processed_sentences) if 0.3 <= s['importance_score'] <= 0.7]
low_importance = [i for i, s in enumerate(processed_sentences) if s['importance_score'] < 0.3]
Logger(f"Importance distribution: High={len(high_importance)}, Medium={len(medium_importance)}, Low={len(low_importance)}")
for cluster_idx in tqdm(range(knowledge_num)):
# 分层选择种子:优先选择高重要性句子
if high_importance:
seed_pool = high_importance
elif medium_importance:
seed_pool = medium_importance
else:
# knowledge_length不匹配需要重新计算
Logger(f"Cached knowledge_length ({cached_knowledge_length}) != required knowledge_length ({knowledge_length}), recomputing...")
clustered_tensor = None
except Exception as e:
Logger(f"Failed to load cached clusters: {e}, recomputing...")
clustered_tensor = None
seed_pool = low_importance if low_importance else list(range(len(processed_sentences)))
if not seed_pool:
break
# 随机选择种子(在同一重要性层级内)
seed_global_idx = random.choice(seed_pool)
seed_sentence = processed_sentences[seed_global_idx]
# 从所有池中移除种子
for pool in [high_importance, medium_importance, low_importance]:
if seed_global_idx in pool:
pool.remove(seed_global_idx)
current_cluster_indices = [seed_global_idx]
current_tokens = seed_sentence['token_length']
if current_tokens < max_tokens:
# 快速选择:只从附近的句子中随机选择
all_remaining = high_importance + medium_importance + low_importance
if all_remaining:
# 随机采样候选句子(而不是计算所有相似度)
sample_size = min(100, len(all_remaining))
candidates = random.sample(all_remaining, sample_size)
# 简单按token长度和重要性选择
for candidate_idx in candidates:
candidate = processed_sentences[candidate_idx]
candidate_tokens = candidate['token_length']
if current_tokens + candidate_tokens + 1 <= max_tokens:
current_cluster_indices.append(candidate_idx)
current_tokens += candidate_tokens + 1
# 从池中移除
for pool in [high_importance, medium_importance, low_importance]:
if candidate_idx in pool:
pool.remove(candidate_idx)
break
if current_tokens >= min_tokens:
break
# 生成聚类文本
cluster_sentences = [processed_sentences[idx]['sentence'] for idx in current_cluster_indices]
cluster_text = '\n '.join(cluster_sentences)
# 转换为tokens
cluster_tokens = tokenizer.encode(cluster_text, add_special_tokens=False)
if len(cluster_tokens) > knowledge_length:
cluster_tokens = cluster_tokens[:knowledge_length]
else:
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
cluster_tokens.extend([pad_token_id] * (knowledge_length - len(cluster_tokens)))
clustered_rows.append(cluster_tokens)
if (cluster_idx + 1) % 1000 == 0:
total_remaining = len(high_importance) + len(medium_importance) + len(low_importance)
Logger(f"Fast clustering: {cluster_idx + 1}/{knowledge_num} clusters, {total_remaining} sentences remaining")
# 只有在没有有效缓存时才进行数据库初始化和聚类计算
if clustered_tensor is None:
Logger(f"Loading database initialization data from {database_init_path}")
# 1. 加载JSON文件并转换为字典
with open(database_init_path, 'r', encoding='utf-8') as f:
database_data = json.load(f)
# 提取sentences列表
sentences_data = database_data.get('sentences', [])
Logger(f"Loaded {len(sentences_data)} sentences from database")
# 2. 按照importance_score进行排序从高到低
sorted_sentences = sorted(sentences_data, key=lambda x: x.get('importance_score', 0.0), reverse=True)
Logger(f"Sorted sentences by importance score (highest: {sorted_sentences[0].get('importance_score', 0.0)}, lowest: {sorted_sentences[-1].get('importance_score', 0.0)})")
# 3. 下载并初始化本地嵌入模型
embedding_model_name = "sentence-transformers/all-mpnet-base-v2" # 轻量级但效果好的模型
embedding_model_dir = "./models/sentence_transformers/models--sentence-transformers--all-mpnet-base-v2"
embedding_cache_dir = "./models/sentence_transformers/cache"
os.makedirs(embedding_cache_dir, exist_ok=True)
Logger(f"Loading embedding model: {embedding_model_name}")
try:
embedding_model = SentenceTransformer(embedding_model_dir, cache_folder=embedding_cache_dir)
Logger("Embedding model loaded successfully")
except Exception as e:
Logger(f"Failed to load embedding model: {e}")
Logger("Falling back to random embeddings")
embedding_model = None
# 4. 对每个corrected_sentence进行嵌入和token长度计算
Logger("Processing sentences for embeddings and token lengths...")
# 提取所有句子
sentences = [sentence_data.get('corrected_sentence', '') for sentence_data in sorted_sentences]
# 批量计算token长度
Logger("Computing token lengths...")
token_lengths = []
for sentence in sentences:
tokens = tokenizer.encode(sentence, add_special_tokens=False)
token_lengths.append(len(tokens))
# 批量计算嵌入 - 大幅提升速度
Logger("Computing embeddings in batches...")
embeddings_list = []
batch_size = 256 # 可以根据GPU内存调整
if embedding_model is not None:
try:
for i in range(0, len(sentences), batch_size):
batch_sentences = sentences[i:i+batch_size]
batch_embeddings = embedding_model.encode(
batch_sentences,
convert_to_tensor=False,
show_progress_bar=True if i == 0 else False,
batch_size=batch_size
)
embeddings_list.extend(batch_embeddings)
else:
# 原始优化算法(适用于中等规模数据集)
# 优化2: 批量处理和更高效的数据结构
for cluster_idx in tqdm(range(knowledge_num)):
if not remaining_indices:
Logger(f"No more sentences available. Created {cluster_idx} clusters.")
break
# 2.1 选择importance_score最高的句子作为种子
remaining_sentences_subset = [processed_sentences[i] for i in remaining_indices]
seed_idx_in_subset = max(range(len(remaining_sentences_subset)),
key=lambda i: remaining_sentences_subset[i]['importance_score'])
seed_global_idx = remaining_indices[seed_idx_in_subset]
seed_sentence = processed_sentences[seed_global_idx]
# 从剩余索引中移除种子
remaining_indices.remove(seed_global_idx)
# 当前聚类
current_cluster_indices = [seed_global_idx]
current_tokens = seed_sentence['token_length']
if current_tokens >= max_tokens:
# 如果种子句子已经超过最大token数直接作为一个聚类
cluster_text = seed_sentence['sentence']
else:
# 2.2 优化的相似度计算和选择
if remaining_indices:
if similarity_matrix is not None:
# 使用预计算的相似度矩阵
similarities = similarity_matrix[seed_global_idx][remaining_indices]
else:
# 动态计算相似度(批量)
seed_embedding = embeddings_matrix[seed_global_idx:seed_global_idx+1]
remaining_embeddings = embeddings_matrix[remaining_indices]
similarities = cosine_similarity(seed_embedding, remaining_embeddings)[0]
if (i + batch_size) % (batch_size * 10) == 0:
Logger(f"Processed {min(i + batch_size, len(sentences))}/{len(sentences)} sentences")
# 创建(相似度, 原始索引, 在remaining_indices中的位置)的元组列表
similarity_tuples = [(similarities[i], remaining_indices[i], i)
for i in range(len(remaining_indices))]
# 按相似度排序(降序)
similarity_tuples.sort(key=lambda x: x[0], reverse=True)
# 优化3: 贪心选择,但限制搜索范围以提高速度
max_candidates = min(len(similarity_tuples), 500) # 只考虑前500个最相似的句子
selected_indices_in_remaining = []
for sim_score, global_idx, pos_in_remaining in similarity_tuples[:max_candidates]:
candidate = processed_sentences[global_idx]
candidate_tokens = candidate['token_length']
Logger("Batch embedding computation completed")
except Exception as e:
Logger(f"Error in batch encoding: {e}")
Logger("Falling back to random embeddings")
embeddings_list = [np.random.randn(384).astype(np.float32) for _ in sentences]
else:
# 使用随机嵌入
embeddings_list = [np.random.randn(384).astype(np.float32) for _ in sentences]
# 创建处理后的句子列表
processed_sentences = []
for i, (sentence_data, embedding, token_length) in enumerate(zip(sorted_sentences, embeddings_list, token_lengths)):
processed_sentences.append({
'sentence': sentence_data.get('corrected_sentence', ''),
'importance_score': sentence_data.get('importance_score', 0.0),
'token_length': token_length,
'embedding': embedding, # Convert numpy array to list
'original_index': i
})
# 转换为numpy数组以便后续处理
embeddings_array = np.array(embeddings_list)
token_lengths_array = np.array(token_lengths)
Logger(f"Embedding processing completed:")
Logger(f" - Total sentences: {len(processed_sentences)}")
Logger(f" - Embedding shape: {embeddings_array.shape}")
Logger(f" - Average token length: {np.mean(token_lengths_array):.2f}")
Logger(f" - Token length range: {np.min(token_lengths_array)} - {np.max(token_lengths_array)}")
# 聚类参数定义
min_tokens = int(0.85 * knowledge_length)
max_tokens = int(0.95 * knowledge_length)
# 优化1: 预计算所有嵌入的相似度矩阵(如果数据量不太大)
if len(processed_sentences) <= 10000: # 只有在数据量不太大时才预计算
Logger("Pre-computing similarity matrix for faster clustering...")
embeddings_matrix = np.array([s['embedding'] for s in processed_sentences])
similarity_matrix = cosine_similarity(embeddings_matrix)
Logger(f"Similarity matrix computed: {similarity_matrix.shape}")
else:
similarity_matrix = None
embeddings_matrix = np.array([s['embedding'] for s in processed_sentences])
clustered_rows = []
remaining_indices = list(range(len(processed_sentences))) # 使用索引而不是对象
Logger(f"Target: {knowledge_num} clusters, each with {min_tokens}-{max_tokens} tokens")
# 选择聚类算法
if args.fast_clustering and len(processed_sentences) > 5000:
Logger("Using ultra-fast approximate clustering algorithm...")
# 超快速聚类:随机采样 + 批量处理
import random
random.seed(42) # 确保可重现性
# 按重要性分层采样
high_importance = [i for i, s in enumerate(processed_sentences) if s['importance_score'] > 0.7]
medium_importance = [i for i, s in enumerate(processed_sentences) if 0.3 <= s['importance_score'] <= 0.7]
low_importance = [i for i, s in enumerate(processed_sentences) if s['importance_score'] < 0.3]
Logger(f"Importance distribution: High={len(high_importance)}, Medium={len(medium_importance)}, Low={len(low_importance)}")
for cluster_idx in tqdm(range(knowledge_num)):
# 分层选择种子:优先选择高重要性句子
if high_importance:
seed_pool = high_importance
elif medium_importance:
seed_pool = medium_importance
else:
seed_pool = low_importance if low_importance else list(range(len(processed_sentences)))
if not seed_pool:
break
# 随机选择种子(在同一重要性层级内)
seed_global_idx = random.choice(seed_pool)
seed_sentence = processed_sentences[seed_global_idx]
# 从所有池中移除种子
for pool in [high_importance, medium_importance, low_importance]:
if seed_global_idx in pool:
pool.remove(seed_global_idx)
current_cluster_indices = [seed_global_idx]
current_tokens = seed_sentence['token_length']
if current_tokens < max_tokens:
# 快速选择:只从附近的句子中随机选择
all_remaining = high_importance + medium_importance + low_importance
if all_remaining:
# 随机采样候选句子(而不是计算所有相似度)
sample_size = min(2000, len(all_remaining))
candidates = random.sample(all_remaining, sample_size)
# 简单按token长度和重要性选择
for candidate_idx in candidates:
candidate = processed_sentences[candidate_idx]
candidate_tokens = candidate['token_length']
if current_tokens + candidate_tokens + 1 <= max_tokens: # +1 for newline
current_cluster_indices.append(global_idx)
selected_indices_in_remaining.append(pos_in_remaining)
current_tokens += candidate_tokens + 1
if current_tokens + candidate_tokens + 1 <= max_tokens:
current_cluster_indices.append(candidate_idx)
current_tokens += candidate_tokens + 1
# 从池中移除
for pool in [high_importance, medium_importance, low_importance]:
if candidate_idx in pool:
pool.remove(candidate_idx)
break
if current_tokens >= min_tokens:
break
if current_tokens >= min_tokens:
break
# 批量移除选中的句子(从后往前移除以避免索引问题)
for pos in sorted(selected_indices_in_remaining, reverse=True):
remaining_indices.pop(pos)
# 生成聚类文本
# 拼接句子
cluster_sentences = [processed_sentences[idx]['sentence'] for idx in current_cluster_indices]
cluster_text = '\n '.join(cluster_sentences)
# 转换为tokens
cluster_tokens = tokenizer.encode(cluster_text, add_special_tokens=False)
if len(cluster_tokens) > knowledge_length:
cluster_tokens = cluster_tokens[:knowledge_length]
else:
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
cluster_tokens.extend([pad_token_id] * (knowledge_length - len(cluster_tokens)))
clustered_rows.append(cluster_tokens)
if (cluster_idx + 1) % 1000 == 0:
total_remaining = len(high_importance) + len(medium_importance) + len(low_importance)
Logger(f"Fast clustering: {cluster_idx + 1}/{knowledge_num} clusters, {total_remaining} sentences remaining")
else:
# 原始优化算法(适用于中等规模数据集)
# 优化2: 批量处理和更高效的数据结构
for cluster_idx in tqdm(range(knowledge_num)):
if not remaining_indices:
Logger(f"No more sentences available. Created {cluster_idx} clusters.")
break
# 2.1 选择importance_score最高的句子作为种子
remaining_sentences_subset = [processed_sentences[i] for i in remaining_indices]
seed_idx_in_subset = max(range(len(remaining_sentences_subset)),
key=lambda i: remaining_sentences_subset[i]['importance_score'])
seed_global_idx = remaining_indices[seed_idx_in_subset]
seed_sentence = processed_sentences[seed_global_idx]
# 从剩余索引中移除种子
remaining_indices.remove(seed_global_idx)
# 当前聚类
current_cluster_indices = [seed_global_idx]
current_tokens = seed_sentence['token_length']
if current_tokens >= max_tokens:
# 如果种子句子已经超过最大token数直接作为一个聚类
cluster_text = seed_sentence['sentence']
else:
# 2.2 优化的相似度计算和选择
if remaining_indices:
if similarity_matrix is not None:
# 使用预计算的相似度矩阵
similarities = similarity_matrix[seed_global_idx][remaining_indices]
else:
# 动态计算相似度(批量)
seed_embedding = embeddings_matrix[seed_global_idx:seed_global_idx+1]
remaining_embeddings = embeddings_matrix[remaining_indices]
similarities = cosine_similarity(seed_embedding, remaining_embeddings)[0]
# 创建(相似度, 原始索引, 在remaining_indices中的位置)的元组列表
similarity_tuples = [(similarities[i], remaining_indices[i], i)
for i in range(len(remaining_indices))]
# 按相似度排序(降序)
similarity_tuples.sort(key=lambda x: x[0], reverse=True)
# 优化3: 贪心选择,但限制搜索范围以提高速度
max_candidates = min(len(similarity_tuples), 500) # 只考虑前500个最相似的句子
selected_indices_in_remaining = []
for sim_score, global_idx, pos_in_remaining in similarity_tuples[:max_candidates]:
candidate = processed_sentences[global_idx]
candidate_tokens = candidate['token_length']
if current_tokens + candidate_tokens + 1 <= max_tokens: # +1 for newline
current_cluster_indices.append(global_idx)
selected_indices_in_remaining.append(pos_in_remaining)
current_tokens += candidate_tokens + 1
if current_tokens >= min_tokens:
break
# 批量移除选中的句子(从后往前移除以避免索引问题)
for pos in sorted(selected_indices_in_remaining, reverse=True):
remaining_indices.pop(pos)
# 拼接句子
cluster_sentences = [processed_sentences[idx]['sentence'] for idx in current_cluster_indices]
cluster_text = '\n'.join(cluster_sentences)
# 将聚类文本转换为token
cluster_tokens = tokenizer.encode(cluster_text, add_special_tokens=False)
# 截断或填充到knowledge_length
if len(cluster_tokens) > knowledge_length:
cluster_tokens = cluster_tokens[:knowledge_length]
else:
# 用pad_token_id填充
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
cluster_tokens.extend([pad_token_id] * (knowledge_length - len(cluster_tokens)))
clustered_rows.append(cluster_tokens)
# 优化4: 减少日志频率
if (cluster_idx + 1) % 500 == 0:
Logger(f"Created {cluster_idx + 1}/{knowledge_num} clusters, {len(remaining_indices)} sentences remaining")
# 如果聚类数量不足用随机token填充
while len(clustered_rows) < knowledge_num:
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
random_tokens = [pad_token_id] * knowledge_length
clustered_rows.append(random_tokens)
# 转换为tensor
clustered_tensor = torch.tensor(clustered_rows, dtype=torch.long)
Logger(f"Clustering completed:")
Logger(f" - Created {len(clustered_rows)} clusters")
Logger(f" - Cluster shape: {clustered_tensor.shape}")
Logger(f" - Expected shape: ({knowledge_num}, {knowledge_length})")
# 保存聚类结果到缓存文件
try:
torch.save(clustered_tensor, args.cluster_cache_path)
Logger(f"Cluster results saved to {args.cluster_cache_path}")
except Exception as e:
Logger(f"Failed to save cluster results: {e}")
cluster_text = '\n'.join(cluster_sentences)
# 将聚类文本转换为token
cluster_tokens = tokenizer.encode(cluster_text, add_special_tokens=False)
# 截断或填充到knowledge_length
if len(cluster_tokens) > knowledge_length:
cluster_tokens = cluster_tokens[:knowledge_length]
else:
# 用pad_token_id填充
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
cluster_tokens.extend([pad_token_id] * (knowledge_length - len(cluster_tokens)))
clustered_rows.append(cluster_tokens)
# 优化4: 减少日志频率
if (cluster_idx + 1) % 500 == 0:
Logger(f"Created {cluster_idx + 1}/{knowledge_num} clusters, {len(remaining_indices)} sentences remaining")
# 如果聚类数量不足用随机token填充
while len(clustered_rows) < knowledge_num:
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
random_tokens = [pad_token_id] * knowledge_length
clustered_rows.append(random_tokens)
# 转换为tensor
clustered_tensor = torch.tensor(clustered_rows, dtype=torch.long)
Logger(f"Clustering completed:")
Logger(f" - Created {len(clustered_rows)} clusters")
Logger(f" - Cluster shape: {clustered_tensor.shape}")
Logger(f" - Expected shape: ({knowledge_num}, {knowledge_length})")
# 3. 初始化模型的weight_down_embed
if hasattr(model, 'extract_db') and hasattr(model.extract_db, 'weight_down_embed'):
@ -681,12 +651,10 @@ def main():
parser.add_argument("--profile", action="store_true", default=True, help="启用性能分析")
parser.add_argument("--profile_interval", type=int, default=10, help="性能分析打印间隔(步数)")
parser.add_argument("--use_flash_attn", action="store_true", default=True, help="启用FlashAttention")
parser.add_argument("--knowledge_num", type=int, default=65536,help="知识库的数据数目")
parser.add_argument("--knowledge_num", type=int, default=64*64,help="知识库的数据数目")
parser.add_argument("--knowledge_length", type=int, default=64,help="知识库的句子长度")
parser.add_argument("--database_init_path", type=str, default="./dataset/database_init.json", help="数据库初始化路径")
parser.add_argument("--fast_clustering", action="store_true", default=True, help="使用快速近似聚类算法(适用于大数据集)")
parser.add_argument("--cluster_cache_path", type=str, default="./cache/cluster_tokens.pt", help="聚类结果缓存文件路径")
parser.add_argument("--recompute_clusters", action="store_true", default=False, help="强制重新计算聚类,忽略缓存文件")
args = parser.parse_args()
#########################################################