Compare commits
2 Commits
6932e5fa8e
...
0b53e1b951
Author | SHA1 | Date | |
---|---|---|---|
0b53e1b951 | |||
64e92473c3 |
@ -1,5 +1,5 @@
|
||||
from transformers import PretrainedConfig
|
||||
from typing import List
|
||||
from typing import List, Optional, Union
|
||||
|
||||
|
||||
class LMConfig(PretrainedConfig):
|
||||
@ -12,17 +12,22 @@ class LMConfig(PretrainedConfig):
|
||||
n_heads: int = 32,
|
||||
n_kv_heads: int = 8,
|
||||
vocab_size: int = 6400,
|
||||
hidden_dim: int = None,
|
||||
hidden_dim: Optional[int] = None,
|
||||
multiple_of: int = 64,
|
||||
norm_eps: float = 1e-5,
|
||||
max_seq_len: int = 8192,
|
||||
rope_theta: int = 1e6,
|
||||
rope_theta: float = 1e6,
|
||||
dropout: float = 0.0,
|
||||
flash_attn: bool = True,
|
||||
####################################################
|
||||
# DB related configurations
|
||||
####################################################
|
||||
disable_db: bool = False, # 特殊模式:禁用数据库功能
|
||||
db_intelligent_balance: bool = True, # 是否启用智能负载均衡
|
||||
db_relevance_threshold: float = 0.7, # 相关性阈值(第一层过滤)
|
||||
db_balance_strength: float = 0.3, # 平衡权重的基础值
|
||||
db_momentum: float = 0.9, # 使用频率统计的动量
|
||||
db_adaptive_weights: bool = True, # 是否启用动态权重调整
|
||||
####################################################
|
||||
# Here are the specific configurations of MOE
|
||||
# When use_moe is false, the following is invalid
|
||||
@ -57,6 +62,11 @@ class LMConfig(PretrainedConfig):
|
||||
# DB related configurations
|
||||
####################################################
|
||||
self.disable_db = disable_db # 设置是否禁用数据库
|
||||
self.db_intelligent_balance = db_intelligent_balance # 是否启用智能负载均衡
|
||||
self.db_relevance_threshold = db_relevance_threshold # 相关性阈值(第一层过滤)
|
||||
self.db_balance_strength = db_balance_strength # 平衡权重的基础值
|
||||
self.db_momentum = db_momentum # 使用频率统计的动量
|
||||
self.db_adaptive_weights = db_adaptive_weights # 是否启用动态权重调整
|
||||
####################################################
|
||||
# Here are the specific configurations of MOE
|
||||
# When use_moe is false, the following is invalid
|
||||
|
258
model/model.py
258
model/model.py
@ -188,11 +188,6 @@ class Attention(nn.Module):
|
||||
|
||||
# 应用旋转位置编码(使用实数版本)
|
||||
xq, xk = apply_rotary_emb_real(xq, xk, pos_cis)
|
||||
# kv_cache实现 REMOVED
|
||||
# if past_key_value is not None:
|
||||
# xk = torch.cat([past_key_value[0], xk], dim=1)
|
||||
# xv = torch.cat([past_key_value[1], xv], dim=1)
|
||||
# past_kv = (xk, xv) if use_cache else None
|
||||
|
||||
# 重复键值对
|
||||
xq, xk, xv = (
|
||||
@ -440,66 +435,7 @@ class MiniMindBlock(nn.Module):
|
||||
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
||||
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
|
||||
|
||||
# 假设num_experts是已定义的总专家数量的平方根
|
||||
|
||||
|
||||
# 查询生成的参数
|
||||
|
||||
|
||||
# 创建查询生成模块
|
||||
# if weight_down_embed is not None:
|
||||
# self.to_queries = nn.Sequential(
|
||||
# nn.Linear(config.dim, self.dim_key * 2, bias=False),
|
||||
# # nn.Unflatten(2, (2, self.n_heads, self.dim_key)) # 替代Rearrange
|
||||
# )
|
||||
|
||||
# # 超参数
|
||||
# self.product_key_topk = min(16, self.num_keys) # 确保不超过num_keys
|
||||
# self.num_experts_per_head_topk = 1 # 最终每个头选取的专家数
|
||||
|
||||
def forward(self, x, db_value, pos_cis):
|
||||
# import pdb;pdb.set_trace()
|
||||
# db_value = None
|
||||
|
||||
# # 如果有weight_down_embed,使用Product Key机制
|
||||
# if self.weight_down_embed is not None:
|
||||
# # 1. 生成queries
|
||||
# batch_size, seq_len, dim = x.shape
|
||||
|
||||
# # collapse sequence dimension by averaging
|
||||
# x_flat = x.mean(dim=1) # [batch_size, dim]
|
||||
# queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
|
||||
# queries = queries.reshape(batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
|
||||
# queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
|
||||
|
||||
# # 2. 计算queries与keys的相似度
|
||||
# sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
|
||||
|
||||
# # 3. 在两个子空间分别做top-k
|
||||
# scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
|
||||
# scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
|
||||
# indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
|
||||
|
||||
# # 4. 组合两个子空间的分数和索引
|
||||
# all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
|
||||
# all_scores = all_scores.view(*all_scores.shape[:-2], -1)
|
||||
|
||||
# all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
|
||||
# all_indices = all_indices.view(*all_indices.shape[:-2], -1)
|
||||
|
||||
# # 5. 最终top-k选择
|
||||
# scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
|
||||
# indices = all_indices.gather(-1, pk_indices)
|
||||
|
||||
# # 6. 从embedding中获取专家值
|
||||
|
||||
# # 从embedding中获取值
|
||||
# flat_indices = indices.view(-1) # 将索引展平为一维张量
|
||||
# db_values = self.weight_down_embed(flat_indices)
|
||||
|
||||
# # 重塑回原始形状
|
||||
# db_value = db_values.view(batch_size, -1, dim)
|
||||
|
||||
|
||||
# 注意力计算
|
||||
h_attn = self.attention(
|
||||
@ -518,7 +454,7 @@ class MiniMindBlock(nn.Module):
|
||||
return out
|
||||
|
||||
class ExtractDB(nn.Module):
|
||||
def __init__(self,params):
|
||||
def __init__(self, params, tok_embeddings=None):
|
||||
# 修改专家数量和知识维度,确保能开方
|
||||
super().__init__()
|
||||
self.batch_size = None
|
||||
@ -529,12 +465,27 @@ class ExtractDB(nn.Module):
|
||||
self.head_dim = params.dim // params.n_heads
|
||||
self.knowledge_length = params.knowledge_length
|
||||
|
||||
# 使用register_buffer代替nn.Parameter,避免梯度问题
|
||||
# self.register_buffer('weight_down_embed', torch.randn(self.knowledge_num, self.knowledge_length) * 0.02)
|
||||
self.register_buffer('weight_down_embed',torch.randint(low=0,high=6400, size=(self.knowledge_num, self.knowledge_length),dtype=torch.long))
|
||||
# 智能负载均衡相关参数
|
||||
self.enable_intelligent_balance = getattr(params, 'db_intelligent_balance', True)
|
||||
self.relevance_threshold = getattr(params, 'db_relevance_threshold', 0.7)
|
||||
self.base_balance_strength = getattr(params, 'db_balance_strength', 0.3)
|
||||
self.momentum = getattr(params, 'db_momentum', 0.9)
|
||||
self.adaptive_weights = getattr(params, 'db_adaptive_weights', True)
|
||||
|
||||
# 动态权重调整参数
|
||||
self.current_relevance_weight = 0.8 # 开始时更重视相关性
|
||||
self.current_balance_weight = 0.2
|
||||
self.weight_update_frequency = 100 # 每100步调整一次权重
|
||||
self.step_counter = 0
|
||||
|
||||
# 使用频率统计 - 使用register_buffer以便在GPU/CPU间正确移动
|
||||
self.register_buffer('usage_counts', torch.zeros(self.knowledge_num))
|
||||
self.register_buffer('total_queries', torch.tensor(0.0))
|
||||
|
||||
# 知识库存储 - 使用register_buffer因为这是整数索引,不需要梯度
|
||||
self.register_buffer('weight_down_embed',
|
||||
torch.randint(low=0, high=6400, size=(self.knowledge_num, self.knowledge_length), dtype=torch.long)
|
||||
)
|
||||
|
||||
self.num_keys = int(math.sqrt(self.knowledge_num)) if self.knowledge_num > 0 else 0
|
||||
self.product_key_topk = min(16, self.num_keys)
|
||||
@ -544,6 +495,152 @@ class ExtractDB(nn.Module):
|
||||
nn.Linear(params.dim, self.dim_key * 2, bias=False),
|
||||
)
|
||||
|
||||
# 存储token embeddings的引用,用于计算真实的语义相关性
|
||||
self.tok_embeddings = tok_embeddings
|
||||
|
||||
def update_usage_statistics(self, selected_indices):
|
||||
"""更新数据库条目的使用统计"""
|
||||
if not self.training or not self.enable_intelligent_balance:
|
||||
return
|
||||
|
||||
with torch.no_grad():
|
||||
# 统计当前batch中每个条目的使用次数
|
||||
batch_usage = torch.zeros(self.knowledge_num, device=selected_indices.device)
|
||||
unique_indices, counts = torch.unique(selected_indices, return_counts=True)
|
||||
batch_usage[unique_indices] = counts.float()
|
||||
|
||||
# 使用简单的tensor操作来更新统计
|
||||
current_usage = self.usage_counts.clone()
|
||||
current_total = self.total_queries.clone()
|
||||
|
||||
new_usage = self.momentum * current_usage + (1 - self.momentum) * batch_usage
|
||||
new_total = current_total + selected_indices.numel()
|
||||
|
||||
# 直接替换buffer内容
|
||||
self.usage_counts.copy_(new_usage)
|
||||
self.total_queries.copy_(new_total)
|
||||
|
||||
def update_dynamic_weights(self):
|
||||
"""动态调整相关性和平衡权重"""
|
||||
if not self.adaptive_weights or not self.training:
|
||||
return
|
||||
|
||||
self.step_counter += 1
|
||||
|
||||
# 每隔一定步数调整权重
|
||||
if self.step_counter % self.weight_update_frequency == 0:
|
||||
with torch.no_grad():
|
||||
if self.total_queries > 0:
|
||||
# 计算使用分布的方差(不平衡程度)
|
||||
usage_rates = self.usage_counts / self.total_queries
|
||||
usage_variance = usage_rates.var().item()
|
||||
|
||||
# 根据不平衡程度调整权重
|
||||
if usage_variance > 0.01: # 高度不平衡
|
||||
self.current_relevance_weight = max(0.5, self.current_relevance_weight - 0.1)
|
||||
self.current_balance_weight = min(0.5, self.current_balance_weight + 0.1)
|
||||
elif usage_variance < 0.001: # 已经很平衡
|
||||
self.current_relevance_weight = min(0.9, self.current_relevance_weight + 0.1)
|
||||
self.current_balance_weight = max(0.1, self.current_balance_weight - 0.1)
|
||||
|
||||
# 确保权重和为1
|
||||
total_weight = self.current_relevance_weight + self.current_balance_weight
|
||||
self.current_relevance_weight /= total_weight
|
||||
self.current_balance_weight /= total_weight
|
||||
|
||||
def intelligent_selection(self, query, all_scores, all_indices):
|
||||
"""智能分层选择策略"""
|
||||
if not self.enable_intelligent_balance or not self.training:
|
||||
# 如果禁用智能平衡或在推理模式,使用原始分数
|
||||
return all_scores
|
||||
|
||||
with torch.no_grad():
|
||||
batch_size = all_scores.size(0)
|
||||
device = all_scores.device
|
||||
dtype = all_scores.dtype
|
||||
|
||||
# 更新动态权重
|
||||
self.update_dynamic_weights()
|
||||
|
||||
# 对每个batch进行分层选择
|
||||
enhanced_scores = all_scores.clone()
|
||||
|
||||
# 预先计算query的特征表示(取平均)
|
||||
query_features = query.mean(dim=1) # [batch_size, dim]
|
||||
|
||||
for batch_idx in range(batch_size):
|
||||
indices = all_indices[batch_idx] # 当前batch的候选条目
|
||||
scores = all_scores[batch_idx] # 当前batch的原始分数
|
||||
|
||||
# 第一层:基于value内容计算真正的相关性
|
||||
# 1. 获取候选条目的value tokens(只获取当前需要的)
|
||||
candidate_tokens = self.weight_down_embed[indices] # [num_candidates, knowledge_length]
|
||||
|
||||
# 2. 高效计算:直接使用embedding层,避免中间变量
|
||||
# 将tokens reshape为一维,批量计算embeddings,然后reshape回来
|
||||
num_candidates, knowledge_length = candidate_tokens.shape
|
||||
flat_tokens = candidate_tokens.view(-1) # [num_candidates * knowledge_length]
|
||||
|
||||
# 批量计算所有token的embeddings
|
||||
flat_embeddings = self.tok_embeddings(flat_tokens) # [num_candidates * knowledge_length, dim]
|
||||
|
||||
# Reshape回原始形状并进行mean pooling
|
||||
candidate_embeddings = flat_embeddings.view(num_candidates, knowledge_length, -1)
|
||||
candidate_features = candidate_embeddings.mean(dim=1) # [num_candidates, dim]
|
||||
|
||||
# 3. 计算query与候选条目的相似度
|
||||
query_feature = query_features[batch_idx] # [dim]
|
||||
similarity_scores = F.cosine_similarity(
|
||||
query_feature.unsqueeze(0), candidate_features, dim=1
|
||||
) # [num_candidates]
|
||||
|
||||
# 4. 将相似度分数归一化为概率分布
|
||||
relevance_probs = F.softmax(similarity_scores.float(), dim=-1).to(dtype)
|
||||
|
||||
# 相关性阈值:选择概率大于某个阈值的候选项
|
||||
# 动态阈值:如果所有候选项的相似度都很平均,降低阈值
|
||||
mean_prob = relevance_probs.mean()
|
||||
adaptive_threshold = max(self.relevance_threshold * mean_prob, mean_prob * 0.5)
|
||||
relevant_mask = relevance_probs > adaptive_threshold
|
||||
|
||||
if relevant_mask.sum() == 0:
|
||||
# 如果没有足够相关的,选择相似度最高的top-k
|
||||
top_k = min(5, len(indices))
|
||||
_, top_indices = similarity_scores.topk(top_k)
|
||||
relevant_mask = torch.zeros_like(relevant_mask, dtype=torch.bool)
|
||||
relevant_mask[top_indices] = True
|
||||
|
||||
# 第二层:在相关候选中应用平衡策略
|
||||
if relevant_mask.sum() > 1:
|
||||
# 计算平衡分数(使用频率低的分数高)
|
||||
relevant_indices = indices[relevant_mask]
|
||||
relevant_usage = self.usage_counts[relevant_indices]
|
||||
|
||||
# 平衡分数:使用频率的倒数(加1避免除零)
|
||||
balance_scores = 1.0 / (relevant_usage + 1.0)
|
||||
balance_scores = balance_scores / (balance_scores.sum() + 1e-8)
|
||||
|
||||
# 相关性分数(基于真实的语义相似度)
|
||||
relevant_rel_scores = relevance_probs[relevant_mask]
|
||||
relevant_rel_scores = relevant_rel_scores / (relevant_rel_scores.sum() + 1e-8)
|
||||
|
||||
# 综合分数:动态权重组合
|
||||
combined_scores = (self.current_relevance_weight * relevant_rel_scores +
|
||||
self.current_balance_weight * balance_scores.to(dtype))
|
||||
|
||||
# 确保数据类型一致
|
||||
adjustment = self.base_balance_strength * combined_scores.to(dtype)
|
||||
|
||||
# 将综合分数应用到enhanced_scores
|
||||
enhanced_scores[batch_idx, relevant_mask] = (
|
||||
scores[relevant_mask] + adjustment
|
||||
)
|
||||
|
||||
# 清理中间变量,释放显存
|
||||
del candidate_tokens, flat_tokens, flat_embeddings, candidate_embeddings, candidate_features
|
||||
|
||||
return enhanced_scores.to(device)
|
||||
|
||||
def q_to_k(self,x):
|
||||
# 1. 生成queries
|
||||
self.batch_size, seq_len, dim = x.shape
|
||||
@ -570,10 +667,17 @@ class ExtractDB(nn.Module):
|
||||
all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
|
||||
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
|
||||
|
||||
# 5. 最终top-k选择
|
||||
scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
|
||||
# 5. 应用智能分层选择策略
|
||||
enhanced_scores = self.intelligent_selection(x, all_scores, all_indices)
|
||||
|
||||
# 6. 基于增强后的分数进行最终top-k选择
|
||||
scores, pk_indices = enhanced_scores.topk(self.num_experts_per_head_topk, dim=-1)
|
||||
indices = all_indices.gather(-1, pk_indices)
|
||||
flat_indices = indices.view(-1)
|
||||
|
||||
# 7. 更新使用统计
|
||||
self.update_usage_statistics(flat_indices)
|
||||
|
||||
return flat_indices
|
||||
|
||||
def get_data(self, index):
|
||||
@ -599,10 +703,13 @@ class MiniMindLM(PreTrainedModel):
|
||||
self.params = params or LMConfig()
|
||||
super().__init__(self.params)
|
||||
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
|
||||
|
||||
# 先创建token embeddings
|
||||
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
|
||||
self.dropout = nn.Dropout(params.dropout)
|
||||
# 移除旧的weight_down_embed声明
|
||||
self.extract_db = ExtractDB(self.params)
|
||||
|
||||
# 创建ExtractDB,传入tok_embeddings引用
|
||||
self.extract_db = ExtractDB(self.params, self.tok_embeddings)
|
||||
|
||||
# 将self.weight_down_embed传递给每个MiniMindBlock
|
||||
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
|
||||
@ -652,13 +759,6 @@ class MiniMindLM(PreTrainedModel):
|
||||
h_list = []
|
||||
|
||||
for l, layer in enumerate(self.layers):
|
||||
# 禁用数据库模式,使用固定值替代数据库查询
|
||||
if self.params.disable_db:
|
||||
# 创建一个形状为[batch_size, n_layers, dim]的tensor,所有元素值为1e-4
|
||||
batch_size = h.size(0)
|
||||
db_value = torch.full((batch_size, self.n_layers, self.params.dim), 1e-4,
|
||||
dtype=h.dtype, device=h.device)
|
||||
else:
|
||||
# 正常模式,使用数据库查询
|
||||
# import pdb;pdb.set_trace()
|
||||
index = self.extract_db.q_to_k(h)
|
||||
|
@ -92,6 +92,47 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
|
||||
from sentence_transformers import SentenceTransformer
|
||||
import os
|
||||
|
||||
# 聚类参数(需要提前定义用于缓存检查)
|
||||
knowledge_num = args.knowledge_num
|
||||
knowledge_length = args.knowledge_length
|
||||
|
||||
# 检查是否使用缓存(提前检查,避免不必要的数据处理)
|
||||
cache_dir = os.path.dirname(args.cluster_cache_path)
|
||||
if cache_dir:
|
||||
os.makedirs(cache_dir, exist_ok=True)
|
||||
|
||||
clustered_tensor = None
|
||||
|
||||
# 尝试加载缓存的聚类结果
|
||||
if not args.recompute_clusters and os.path.exists(args.cluster_cache_path):
|
||||
try:
|
||||
Logger(f"Loading cached cluster results from {args.cluster_cache_path}")
|
||||
clustered_tensor = torch.load(args.cluster_cache_path)
|
||||
|
||||
# 验证缓存文件的形状是否可用
|
||||
cached_knowledge_num, cached_knowledge_length = clustered_tensor.shape
|
||||
|
||||
if cached_knowledge_length == knowledge_length:
|
||||
if cached_knowledge_num >= knowledge_num:
|
||||
# 缓存足够大,可以截取使用
|
||||
clustered_tensor = clustered_tensor[:knowledge_num, :]
|
||||
Logger(f"Successfully loaded cached clusters with shape {clustered_tensor.shape}")
|
||||
Logger(f"Truncated from cached shape ({cached_knowledge_num}, {cached_knowledge_length}) to required shape ({knowledge_num}, {knowledge_length})")
|
||||
Logger("Skipping database initialization and clustering - using cached results")
|
||||
else:
|
||||
# 缓存太小,需要重新计算
|
||||
Logger(f"Cached knowledge_num ({cached_knowledge_num}) < required knowledge_num ({knowledge_num}), recomputing...")
|
||||
clustered_tensor = None
|
||||
else:
|
||||
# knowledge_length不匹配,需要重新计算
|
||||
Logger(f"Cached knowledge_length ({cached_knowledge_length}) != required knowledge_length ({knowledge_length}), recomputing...")
|
||||
clustered_tensor = None
|
||||
except Exception as e:
|
||||
Logger(f"Failed to load cached clusters: {e}, recomputing...")
|
||||
clustered_tensor = None
|
||||
|
||||
# 只有在没有有效缓存时才进行数据库初始化和聚类计算
|
||||
if clustered_tensor is None:
|
||||
Logger(f"Loading database initialization data from {database_init_path}")
|
||||
|
||||
# 1. 加载JSON文件并转换为字典
|
||||
@ -174,19 +215,6 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
|
||||
'original_index': i
|
||||
})
|
||||
|
||||
# # Create a JSON-serializable version for saving
|
||||
# json_serializable_sentences = []
|
||||
# for sentence in processed_sentences:
|
||||
# json_sentence = sentence.copy()
|
||||
# # Convert embedding to list if it's a numpy array
|
||||
# if hasattr(json_sentence['embedding'], 'tolist'):
|
||||
# json_sentence['embedding'] = json_sentence['embedding'].tolist()
|
||||
# json_serializable_sentences.append(json_sentence)
|
||||
|
||||
# json.dump(json_serializable_sentences, open('processed_sentences.json', 'w', encoding='utf-8'))
|
||||
|
||||
# processed_sentences = json.load(open('processed_sentences.json', 'r', encoding='utf-8'))
|
||||
|
||||
# 转换为numpy数组以便后续处理
|
||||
embeddings_array = np.array(embeddings_list)
|
||||
token_lengths_array = np.array(token_lengths)
|
||||
@ -197,12 +225,7 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
|
||||
Logger(f" - Average token length: {np.mean(token_lengths_array):.2f}")
|
||||
Logger(f" - Token length range: {np.min(token_lengths_array)} - {np.max(token_lengths_array)}")
|
||||
|
||||
# 2. 聚类处理 - 优化版本
|
||||
Logger("Starting optimized clustering process...")
|
||||
|
||||
# 聚类参数
|
||||
knowledge_num = args.knowledge_num
|
||||
knowledge_length = args.knowledge_length
|
||||
# 聚类参数定义
|
||||
min_tokens = int(0.85 * knowledge_length)
|
||||
max_tokens = int(0.95 * knowledge_length)
|
||||
|
||||
@ -265,7 +288,7 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
|
||||
all_remaining = high_importance + medium_importance + low_importance
|
||||
if all_remaining:
|
||||
# 随机采样候选句子(而不是计算所有相似度)
|
||||
sample_size = min(100, len(all_remaining))
|
||||
sample_size = min(2000, len(all_remaining))
|
||||
candidates = random.sample(all_remaining, sample_size)
|
||||
|
||||
# 简单按token长度和重要性选择
|
||||
@ -403,6 +426,13 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
|
||||
Logger(f" - Cluster shape: {clustered_tensor.shape}")
|
||||
Logger(f" - Expected shape: ({knowledge_num}, {knowledge_length})")
|
||||
|
||||
# 保存聚类结果到缓存文件
|
||||
try:
|
||||
torch.save(clustered_tensor, args.cluster_cache_path)
|
||||
Logger(f"Cluster results saved to {args.cluster_cache_path}")
|
||||
except Exception as e:
|
||||
Logger(f"Failed to save cluster results: {e}")
|
||||
|
||||
# 3. 初始化模型的weight_down_embed
|
||||
if hasattr(model, 'extract_db') and hasattr(model.extract_db, 'weight_down_embed'):
|
||||
model.extract_db.weight_down_embed.data.copy_(clustered_tensor)
|
||||
@ -651,10 +681,12 @@ def main():
|
||||
parser.add_argument("--profile", action="store_true", default=True, help="启用性能分析")
|
||||
parser.add_argument("--profile_interval", type=int, default=10, help="性能分析打印间隔(步数)")
|
||||
parser.add_argument("--use_flash_attn", action="store_true", default=True, help="启用FlashAttention")
|
||||
parser.add_argument("--knowledge_num", type=int, default=64*64,help="知识库的数据数目")
|
||||
parser.add_argument("--knowledge_num", type=int, default=65536,help="知识库的数据数目")
|
||||
parser.add_argument("--knowledge_length", type=int, default=64,help="知识库的句子长度")
|
||||
parser.add_argument("--database_init_path", type=str, default="./dataset/database_init.json", help="数据库初始化路径")
|
||||
parser.add_argument("--fast_clustering", action="store_true", default=True, help="使用快速近似聚类算法(适用于大数据集)")
|
||||
parser.add_argument("--cluster_cache_path", type=str, default="./cache/cluster_tokens.pt", help="聚类结果缓存文件路径")
|
||||
parser.add_argument("--recompute_clusters", action="store_true", default=False, help="强制重新计算聚类,忽略缓存文件")
|
||||
args = parser.parse_args()
|
||||
|
||||
#########################################################
|
||||
|
Loading…
x
Reference in New Issue
Block a user