Compare commits

..

2 Commits

Author SHA1 Message Date
723082f3ab experiment_1.3.0 2025-07-12 22:17:08 +08:00
5e464bbd3f 添加了对于多种模型的支持 2025-07-12 18:00:53 +08:00
2 changed files with 266 additions and 177 deletions

View File

@ -0,0 +1,47 @@
#!/bin/bash
# 激活conda环境
source $(conda info --base)/etc/profile.d/conda.sh
conda activate ycz_accelerate
# 设置环境变量以帮助调试
export NCCL_DEBUG=INFO
export PYTHONFAULTHANDLER=1
# 实验1.3.0 - 使用命令行参数直接配置accelerate
CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch \
--multi_gpu \
--num_processes=4 \
--mixed_precision=bf16 \
--main_process_port=29500 \
train_pretrain_accelerate.py \
--out_dir "out" \
--epochs 3 \
--embedding_epoch 2 \
--batch_size 72 \
--learning_rate 1e-4 \
--dtype "bfloat16" \
--use_swanlab \
--swanlab_project "MiniMind-Pretrain" \
--num_workers 1 \
--accumulation_steps 16 \
--grad_clip 0.5 \
--warmup_iters 0 \
--log_interval 100 \
--save_interval 10000 \
--dim 1024 \
--n_layers 32 \
--max_seq_len 512 \
--use_moe False \
--data_path "./dataset/stable/merged_pretrain.jsonl" \
--profile \
--profile_interval 10 \
--use_flash_attn \
--knowledge_num 960400 \
--knowledge_length 32 \
--database_init_path "./dataset/stable/sentence_trex_data.json" \
--fast_clustering \
--cluster_cache_path "./cache/cluster_tokens_single.pt" \
--memory_monitor_interval 10 \
--model_type "model_original" \
--model_size "0.5B"

View File

@ -25,7 +25,7 @@ import swanlab # 替换wandb导入
import gc # 添加垃圾回收模块
import psutil # 添加系统资源监控模块
from model.model import MiniMindLM, RMSNorm
from model.LMConfig import LMConfig
from model.dataset import PretrainDataset
@ -105,6 +105,9 @@ def get_lr(it, num_iters, learning_rate):
# 初始化模型函数
def init_model(lm_config, pretrained_embedding_path=None, database_init_path=None, args=None):
if args.model_type == "model":
Logger(f"Using model type: {args.model_type}")
from model.model import MiniMindLM, RMSNorm
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
model = MiniMindLM(lm_config)
@ -197,14 +200,20 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
with open(database_init_path, 'r', encoding='utf-8') as f:
database_data = json.load(f)
sentences_data = []
for data in database_data:
sentences_data.append(data['target'][0]['sentence'])
# 提取sentences列表
sentences_data = database_data.get('sentences', [])
# sentences_data = database_data.get('sentences', [])
Logger(f"Loaded {len(sentences_data)} sentences from database")
# 2. 按照importance_score进行排序从高到低
try:
sorted_sentences = sorted(sentences_data, key=lambda x: x.get('importance_score', 0.0), reverse=True)
Logger(f"Sorted sentences by importance score (highest: {sorted_sentences[0].get('importance_score', 0.0)}, lowest: {sorted_sentences[-1].get('importance_score', 0.0)})")
except:
sorted_sentences = sentences_data
# 3. 处理每条数据,不进行聚类
Logger("Processing individual sentences...")
processed_rows = []
@ -215,16 +224,25 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
# 处理所需数量的句子
num_to_process = min(knowledge_num, len(sorted_sentences))
# 添加截断统计变量
total_sentences = 0
truncated_sentences = 0
for i in range(num_to_process):
sentence_data = sorted_sentences[i]
sentence = sentence_data.get('corrected_sentence', '')
try:
sentence = sentence_data.get('corrected_sentence')
except:
sentence = sentence_data
# 将句子转换为tokens
sentence_tokens = tokenizer.encode(sentence, add_special_tokens=False)
# 截断或填充到knowledge_length
total_sentences += 1
if len(sentence_tokens) > knowledge_length:
# 如果超过长度,截断
truncated_sentences += 1
sentence_tokens = sentence_tokens[:knowledge_length]
Logger(f"Sentence {i+1} truncated from {len(tokenizer.encode(sentence, add_special_tokens=False))} to {knowledge_length} tokens")
else:
@ -251,6 +269,13 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
# 转换为tensor
processed_tensor = torch.tensor(processed_rows, dtype=torch.long)
# 计算并打印截断句子的占比
truncation_ratio = truncated_sentences / total_sentences if total_sentences > 0 else 0.0
Logger(f"截断句子统计:")
Logger(f" - 总句子数: {total_sentences}")
Logger(f" - 截断句子数: {truncated_sentences}")
Logger(f" - 截断句子占比: {truncation_ratio:.4f} ({truncation_ratio*100:.2f}%)")
Logger(f"Data processing completed:")
Logger(f" - Processed {num_to_process} sentences")
Logger(f" - Added {knowledge_num - num_to_process} empty entries")
@ -276,6 +301,13 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
Logger(f"Database embeddings and sentences stored in model")
Logger(f'LLM总参数量{sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} 百万')
elif args.model_type == "model_original":
Logger(f"Using model type: {args.model_type}")
from model.model_original import MiniMindLM, RMSNorm
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
model = MiniMindLM(lm_config)
Logger(f'LLM总参数量{sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} 百万')
return model, tokenizer
def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, args, ctx, overall_start_time, swanlab_run):
@ -302,7 +334,7 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
optimizer_end = torch.cuda.Event(enable_timing=True)
# 预取数据
prefetch_factor = 2 # 预取的批次数
prefetch_factor = 4 # 预取的批次数
data_iter = iter(train_loader)
prefetch_batches = []
@ -389,7 +421,7 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
# 添加辅助损失,如果存在的话
try:
aux_loss = sum(l.feed_forward.aux_loss for l in model.module.layers
if hasattr(l.feed_forward, 'aux_loss'))
if hasattr(l, 'feed_forward') and hasattr(l.feed_forward, 'aux_loss'))
loss += aux_loss
except Exception as e:
Logger(f"Warning: Could not add auxiliary loss: {e}")
@ -586,19 +618,22 @@ def main():
parser.add_argument('--max_seq_len', default=512, type=int)
parser.add_argument('--use_moe', default=False, type=bool)
parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能使用固定值1e-4替代")
parser.add_argument("--data_path", type=str, default="./dataset/merged_pretrain.jsonl")
parser.add_argument("--data_path", type=str, default="./dataset/stable/merged_pretrain.jsonl")
parser.add_argument("--pretrained_embedding_path", type=str, default=None, help="Path to pretrained token embedding weights (.pth file)")
parser.add_argument("--profile", action="store_true", default=True, help="启用性能分析")
parser.add_argument("--profile_interval", type=int, default=10, help="性能分析打印间隔(步数)")
parser.add_argument("--use_flash_attn", action="store_true", default=True, help="启用FlashAttention")
parser.add_argument("--knowledge_num", type=int, default=960400,help="知识库的数据数目")
parser.add_argument("--knowledge_length", type=int, default=32,help="知识库的句子长度")
parser.add_argument("--database_init_path", type=str, default="./dataset/combined_prepare.json", help="数据库初始化路径")
parser.add_argument("--database_init_path", type=str, default="./dataset/stable/sentence_trex_data.json", help="数据库初始化路径")
parser.add_argument("--fast_clustering", action="store_true", default=True, help="使用快速近似聚类算法(适用于大数据集)")
parser.add_argument("--cluster_cache_path", type=str, default="./cache/cluster_tokens_single.pt", help="聚类结果缓存文件路径")
parser.add_argument("--recompute_clusters", action="store_true", default=False, help="强制重新计算聚类,忽略缓存文件")
parser.add_argument("--memory_monitor", action="store_true", default=False, help="启用内存监控")
parser.add_argument("--memory_monitor_interval", type=int, default=10, help="内存监控间隔(步数)")
parser.add_argument("--model_type", type=str, default="model", help="使用什么模型训练") #model,model_original
parser.add_argument("--model_size", type=str, default="0.05B", help="模型大小")
parser.add_argument("--swanlab_online", type=bool, default=True, help="是否使用在线SwanLab服务")
args = parser.parse_args()
#########################################################
@ -667,15 +702,22 @@ def main():
# 初始化SwanLab实验实例
swanlab_run = None
if args.use_swanlab and accelerator.is_main_process:
if args.swanlab_online:
# 使用在线SwanLab服务
# 初始化SwanLab
swanlab_run = swanlab.init(
project=args.swanlab_project,
experiment_name=args.swanlab_run_name,
description="MiniMind预训练实验使用本地部署的SwanLab进行可视化",
config=config_dict,
mode="offline"
)
else:
swanlab_run = swanlab.init(
project=args.swanlab_project,
experiment_name=args.swanlab_run_name,
description="MiniMind预训练实验使用本地部署的SwanLab进行可视化",
config=config_dict
# 设置SwanLab服务器地址和API Key
# host="http://100.123.118.114:11071",
# api_key="LesBT7HRq23HNBrOPKP8S"
)
else:
swanlab_run = None