Compare commits
10 Commits
885661f47d
...
1ddfd310ec
Author | SHA1 | Date | |
---|---|---|---|
![]() |
1ddfd310ec | ||
![]() |
c55dfc0b46 | ||
![]() |
21fdaaa59e | ||
![]() |
7da201a944 | ||
![]() |
d9453ed9a3 | ||
![]() |
d503093ec4 | ||
![]() |
4a758564e4 | ||
![]() |
4a7c1c49e8 | ||
![]() |
9e67798397 | ||
![]() |
399d526fbd |
4
.gitignore
vendored
4
.gitignore
vendored
@ -1,3 +1,5 @@
|
||||
/model/__pycache__
|
||||
/dataset
|
||||
/out
|
||||
/out
|
||||
wandb/
|
||||
**/*.log
|
@ -16,7 +16,7 @@ def init_model(args):
|
||||
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
|
||||
if args.load == 0:
|
||||
moe_path = '_moe' if args.use_moe else ''
|
||||
modes = {0: 'pretrain', 1: 'full_sft', 2: 'rlhf', 3: 'reason'}
|
||||
modes = {0: 'pretrain', 1: 'full_sft', 2: 'rlhf', 3: 'reason', 4: 'grpo'}
|
||||
ckp = f'./{args.out_dir}/{modes[args.model_mode]}_{args.dim}{moe_path}.pth'
|
||||
|
||||
model = MiniMindLM(LMConfig(
|
||||
@ -123,7 +123,7 @@ def main():
|
||||
parser.add_argument('--stream', default=True, type=bool)
|
||||
parser.add_argument('--load', default=0, type=int, help="0: 原生torch权重,1: transformers加载")
|
||||
parser.add_argument('--model_mode', default=1, type=int,
|
||||
help="0: 预训练模型,1: SFT-Chat模型,2: RLHF-Chat模型,3: Reason模型")
|
||||
help="0: 预训练模型,1: SFT-Chat模型,2: RLHF-Chat模型,3: Reason模型,4: RLAIF-Chat模型")
|
||||
args = parser.parse_args()
|
||||
|
||||
model, tokenizer = init_model(args)
|
||||
@ -143,7 +143,7 @@ def main():
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)[-args.max_seq_len + 1:] if args.model_mode != 0 else (tokenizer.bos_token + prompt)
|
||||
)[-args.max_seq_len - 1:] if args.model_mode != 0 else (tokenizer.bos_token + prompt)
|
||||
|
||||
answer = new_prompt
|
||||
with torch.no_grad():
|
||||
|
@ -196,5 +196,50 @@ class DPODataset(Dataset):
|
||||
return loss_mask
|
||||
|
||||
|
||||
class RLAIFDataset(Dataset):
|
||||
def __init__(self, jsonl_path, tokenizer, max_length=1024):
|
||||
super().__init__()
|
||||
self.tokenizer = tokenizer
|
||||
self.max_length = max_length
|
||||
self.samples = self.load_data(jsonl_path)
|
||||
self.bos_id = tokenizer('<s>assistant', add_special_tokens=False).input_ids
|
||||
self.eos_id = tokenizer('</s>', add_special_tokens=False).input_ids
|
||||
|
||||
def __len__(self):
|
||||
return len(self.samples)
|
||||
|
||||
def load_data(self, path):
|
||||
samples = []
|
||||
with open(path, 'r', encoding='utf-8') as f:
|
||||
for line_num, line in enumerate(f, 1):
|
||||
data = json.loads(line.strip())
|
||||
samples.append(data)
|
||||
return samples
|
||||
|
||||
def _create_chat_prompt(self, conversations):
|
||||
"""构建符合ChatML格式的对话"""
|
||||
messages = []
|
||||
answer = ''
|
||||
for i, turn in enumerate(conversations):
|
||||
role = 'user' if i % 2 == 0 else 'assistant'
|
||||
messages.append({"role": role, "content": turn['content']})
|
||||
answer = turn['content']
|
||||
return self.tokenizer.apply_chat_template(
|
||||
messages[:-1],
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
), answer
|
||||
|
||||
def __getitem__(self, index):
|
||||
sample = self.samples[index]
|
||||
# 构建对话提示
|
||||
prompt, answer = self._create_chat_prompt(sample['conversations'])
|
||||
|
||||
return {
|
||||
'prompt': prompt,
|
||||
'answer': answer
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pass
|
||||
|
158
model/model.py
158
model/model.py
@ -12,7 +12,7 @@ from torch import nn
|
||||
from transformers import PreTrainedModel
|
||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||
|
||||
|
||||
# RMSNorm 类定义了一个用于归一化输入张量的模块。
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, eps: float = 1e-6):
|
||||
super().__init__()
|
||||
@ -25,7 +25,7 @@ class RMSNorm(torch.nn.Module):
|
||||
def forward(self, x):
|
||||
return self.weight * self._norm(x.float()).type_as(x)
|
||||
|
||||
|
||||
# precompute_pos_cis 函数用于预计算位置编码。
|
||||
def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
||||
t = torch.arange(end, device=freqs.device) # type: ignore
|
||||
@ -33,7 +33,7 @@ def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
||||
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
||||
return pos_cis
|
||||
|
||||
|
||||
# apply_rotary_emb 函数用于应用旋转位置编码。
|
||||
def apply_rotary_emb(xq, xk, pos_cis):
|
||||
def unite_shape(pos_cis, x):
|
||||
ndim = x.ndim
|
||||
@ -49,7 +49,7 @@ def apply_rotary_emb(xq, xk, pos_cis):
|
||||
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
|
||||
return xq_out.type_as(xq), xk_out.type_as(xk)
|
||||
|
||||
|
||||
# repeat_kv 函数用于重复键值对。
|
||||
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
||||
bs, slen, n_kv_heads, head_dim = x.shape
|
||||
@ -88,13 +88,15 @@ class Attention(nn.Module):
|
||||
x: torch.Tensor,
|
||||
pos_cis: torch.Tensor,
|
||||
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
||||
use_cache=False):
|
||||
bsz, seq_len, _ = x.shape
|
||||
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
||||
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
|
||||
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
||||
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
||||
use_cache=False,
|
||||
db_value=None):
|
||||
bsz, seq_len, _ = x.shape #bsz: 批量大小, seq_len: 序列长度, _: 隐藏维度
|
||||
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) #将输入张量x分别通过线性层wq, wk, wv进行变换,得到查询、键和值。
|
||||
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim) #将变换后的张量xq重塑为形状为(bsz, seq_len, n_local_heads, head_dim)的形状。
|
||||
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xk重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
|
||||
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xv重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
|
||||
|
||||
# 应用旋转位置编码
|
||||
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
|
||||
# kv_cache实现
|
||||
if past_key_value is not None:
|
||||
@ -102,11 +104,40 @@ class Attention(nn.Module):
|
||||
xv = torch.cat([past_key_value[1], xv], dim=1)
|
||||
past_kv = (xk, xv) if use_cache else None
|
||||
|
||||
# 重复键值对
|
||||
xq, xk, xv = (
|
||||
xq.transpose(1, 2),
|
||||
repeat_kv(xk, self.n_rep).transpose(1, 2),
|
||||
repeat_kv(xv, self.n_rep).transpose(1, 2)
|
||||
)
|
||||
|
||||
# 如果提供了db_value,根据头的数量调整它的形状并与xv合并
|
||||
if db_value is not None:
|
||||
# 确保db_value的形状与xv兼容,假设db_value形状为[B, N, H, D]
|
||||
if db_value.ndim == 4: # [B, N, H, D]
|
||||
db_value = db_value.transpose(1, 2) # -> [B, H, N, D]
|
||||
|
||||
# 检查是否需要调整D维度
|
||||
if db_value.shape[-1] != xv.shape[-1]:
|
||||
# 如果db_value的维度与xv不同,可以添加一个投影层
|
||||
# 或者在这里使用简单的调整方法
|
||||
# 这里我们简单地通过均值池化或重复来调整维度
|
||||
if db_value.shape[-1] > xv.shape[-1]:
|
||||
# 降维
|
||||
factor = db_value.shape[-1] // xv.shape[-1]
|
||||
db_value = db_value.view(bsz, self.n_local_heads, seq_len, factor, xv.shape[-1])
|
||||
db_value = db_value.mean(dim=3)
|
||||
else:
|
||||
# 升维
|
||||
factor = xv.shape[-1] // db_value.shape[-1]
|
||||
db_value = db_value.unsqueeze(-1).repeat(1, 1, 1, 1, factor)
|
||||
db_value = db_value.view(bsz, self.n_local_heads, seq_len, xv.shape[-1])
|
||||
|
||||
# 将db_value与xv相加或融合
|
||||
# 这里我们简单地将它们相加,但你也可以使用其他融合方法
|
||||
xv = xv + db_value
|
||||
|
||||
# 使用Flash Attention
|
||||
if self.flash and seq_len != 1:
|
||||
dropout_p = self.dropout if self.training else 0.0
|
||||
output = F.scaled_dot_product_attention(
|
||||
@ -221,7 +252,6 @@ class MOEFeedForward(nn.Module):
|
||||
x = x.view(-1, x.shape[-1])
|
||||
flat_topk_idx = topk_idx.view(-1)
|
||||
if self.training:
|
||||
# 训练模式下,重复输入数据
|
||||
x = x.repeat_interleave(self.config.num_experts_per_tok, dim=0)
|
||||
y = torch.empty_like(x, dtype=torch.float16)
|
||||
for i, expert in enumerate(self.experts):
|
||||
@ -229,7 +259,6 @@ class MOEFeedForward(nn.Module):
|
||||
y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
||||
y = y.view(*orig_shape)
|
||||
else:
|
||||
# 推理模式下,只选择最优专家
|
||||
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
|
||||
if self.config.n_shared_experts is not None:
|
||||
y = y + self.shared_experts(identity)
|
||||
@ -242,9 +271,10 @@ class MOEFeedForward(nn.Module):
|
||||
idxs = flat_expert_indices.argsort()
|
||||
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
|
||||
token_idxs = idxs // self.config.num_experts_per_tok
|
||||
# 例如当tokens_per_expert=[6, 15, 20, 26, 33, 38, 46, 52]
|
||||
# 当token_idxs=[3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...]
|
||||
# 意味着当token_idxs[:6] -> [3, 7, 19, 21, 24, 25, 4]位置的token都由专家0处理,token_idxs[6:15]位置的token都由专家1处理......
|
||||
# 当tokens_per_expert = [6, 15, 20, 26],tokens_per_expert.shape[0]即为专家数量(此时为4)
|
||||
# 且token_idxs = [3, 7, 19, 21, 24, 25, 4, 5, 6, 10, 11, 12...] 时
|
||||
# 意味token_idxs[:6] -> [3, 7, 19, 21, 24, 25]这6个位置属于专家0处理的token(每个token有可能被多个专家处理,这取决于num_experts_per_tok)
|
||||
# 接下来9个位置token_idxs[6:15] -> [4, 5, 6, 10, 11, 12...]属于专家1处理的token...依此类推
|
||||
for i, end_idx in enumerate(tokens_per_expert):
|
||||
start_idx = 0 if i == 0 else tokens_per_expert[i - 1]
|
||||
if start_idx == end_idx:
|
||||
@ -254,14 +284,13 @@ class MOEFeedForward(nn.Module):
|
||||
expert_tokens = x[exp_token_idx]
|
||||
expert_out = expert(expert_tokens).to(expert_cache.dtype)
|
||||
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
|
||||
# 使用 scatter_add_ 进行 sum 操作
|
||||
expert_cache.scatter_add_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out)
|
||||
|
||||
return expert_cache
|
||||
|
||||
|
||||
class MiniMindBlock(nn.Module):
|
||||
def __init__(self, layer_id: int, config: LMConfig):
|
||||
def __init__(self, layer_id: int, config: LMConfig, weight_down_embed=None):
|
||||
super().__init__()
|
||||
self.n_heads = config.n_heads
|
||||
self.dim = config.dim
|
||||
@ -272,13 +301,86 @@ class MiniMindBlock(nn.Module):
|
||||
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
||||
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
||||
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
|
||||
|
||||
# Product Key 相关参数
|
||||
self.weight_down_embed = weight_down_embed
|
||||
# 假设num_experts是已定义的总专家数量的平方根
|
||||
self.num_keys = int(math.sqrt(self.weight_down_embed.num_embeddings)) if weight_down_embed is not None else 0
|
||||
|
||||
# 查询生成的参数
|
||||
self.dim_key = config.dim // 2 # 一般用特征维度的一半
|
||||
|
||||
# 创建查询生成模块
|
||||
if weight_down_embed is not None:
|
||||
self.to_queries = nn.Sequential(
|
||||
nn.Linear(config.dim, self.dim_key * self.n_heads * 2, bias=False),
|
||||
nn.Unflatten(2, (2, self.n_heads, self.dim_key)) # 替代Rearrange
|
||||
)
|
||||
|
||||
# 存储Product Keys
|
||||
self.keys = nn.Parameter(torch.randn(self.n_heads, self.num_keys, 2, self.dim_key) * 0.02)
|
||||
|
||||
# 超参数
|
||||
self.product_key_topk = min(16, self.num_keys) # 确保不超过num_keys
|
||||
self.num_experts_per_head_topk = 1 # 最终每个头选取的专家数
|
||||
|
||||
def forward(self, x, pos_cis, past_key_value=None, use_cache=False):
|
||||
db_value = None
|
||||
|
||||
# 如果有weight_down_embed,使用Product Key机制
|
||||
if self.weight_down_embed is not None:
|
||||
# 1. 生成queries
|
||||
queries = self.to_queries(x) # [b, n, 2, h, d]
|
||||
queries = queries.permute(2, 0, 1, 3, 4) # [2, b, n, h, d]
|
||||
|
||||
# 2. 计算queries与keys的相似度
|
||||
sim = torch.einsum('p b n h d, h k p d -> p b n h k', queries, self.keys)
|
||||
|
||||
# 3. 在两个子空间分别做top-k
|
||||
scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
|
||||
scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
|
||||
indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
|
||||
|
||||
# 4. 组合两个子空间的分数和索引
|
||||
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
|
||||
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
|
||||
|
||||
all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
|
||||
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
|
||||
|
||||
# 5. 最终top-k选择
|
||||
scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
|
||||
indices = all_indices.gather(-1, pk_indices)
|
||||
|
||||
# 6. 从embedding中获取专家值
|
||||
# [b, n, h, k] -> [b, n, h, k, 1] -> [b, n, h, k, d]
|
||||
indices_expanded = indices.unsqueeze(-1).expand(-1, -1, -1, -1, self.weight_down_embed.embedding_dim)
|
||||
|
||||
# 将索引从3D展平为1D以便gather操作
|
||||
batch_size, seq_len = x.shape[0], x.shape[1]
|
||||
flat_indices = indices.view(-1)
|
||||
|
||||
# 从embedding中获取值
|
||||
db_values = self.weight_down_embed(flat_indices)
|
||||
|
||||
# 重塑回原始形状
|
||||
db_value = db_values.view(batch_size, seq_len, self.n_heads,
|
||||
self.num_experts_per_head_topk, -1)
|
||||
|
||||
# 使用分数加权
|
||||
db_value = db_value * F.relu(scores.unsqueeze(-1))
|
||||
|
||||
# 合并多个专家的输出(如果每个头有多个专家)
|
||||
if self.num_experts_per_head_topk > 1:
|
||||
db_value = db_value.sum(dim=3) # [b, n, h, d]
|
||||
|
||||
# 注意力计算
|
||||
h_attn, past_kv = self.attention(
|
||||
self.attention_norm(x),
|
||||
pos_cis,
|
||||
past_key_value=past_key_value,
|
||||
use_cache=use_cache
|
||||
use_cache=use_cache,
|
||||
db_value=db_value
|
||||
)
|
||||
h = x + h_attn
|
||||
out = h + self.feed_forward(self.ffn_norm(h))
|
||||
@ -294,7 +396,20 @@ class MiniMindLM(PreTrainedModel):
|
||||
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
|
||||
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
|
||||
self.dropout = nn.Dropout(params.dropout)
|
||||
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
|
||||
|
||||
# 修改专家数量和知识维度,确保能开方
|
||||
self.num_experts = 1000 * 1000 # 1M专家,确保是完全平方数
|
||||
# 将knowledge_dim设置为与head_dim相同,以便在attention中直接使用
|
||||
self.head_dim = params.dim // params.n_heads
|
||||
self.knowledge_dim = self.head_dim
|
||||
|
||||
# 定义weight_down_embed,用于存储专家知识
|
||||
self.weight_down_embed = nn.Embedding(self.num_experts, self.knowledge_dim)
|
||||
# 初始化embedding权重
|
||||
nn.init.normal_(self.weight_down_embed.weight, std=0.02)
|
||||
|
||||
# 将self.weight_down_embed传递给每个MiniMindBlock
|
||||
self.layers = nn.ModuleList([MiniMindBlock(l, params, self.weight_down_embed) for l in range(self.n_layers)])
|
||||
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
||||
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
|
||||
self.tok_embeddings.weight = self.output.weight
|
||||
@ -325,6 +440,7 @@ class MiniMindLM(PreTrainedModel):
|
||||
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
||||
logits = self.output(self.norm(h)[:, slice_indices, :])
|
||||
aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward))
|
||||
self.OUT.__setitem__('last_hidden_state', h)
|
||||
self.OUT.__setitem__('logits', logits)
|
||||
self.OUT.__setitem__('aux_loss', aux_loss)
|
||||
self.OUT.__setitem__('past_key_values', past_kvs)
|
||||
@ -356,9 +472,7 @@ class MiniMindLM(PreTrainedModel):
|
||||
for seq in generated
|
||||
]
|
||||
output = torch.cat(generated, dim=0)
|
||||
res = output.view(input_ids.size(0), num_return_sequences, -1)
|
||||
res = res.squeeze(0) if input_ids.size(0) == 1 else res
|
||||
res = res.squeeze(1) if num_return_sequences == 1 else res
|
||||
res = output.view(input_ids.size(0) * num_return_sequences, -1)
|
||||
return res
|
||||
|
||||
def _stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, use_cache, **args):
|
||||
|
@ -7,13 +7,13 @@ client = OpenAI(
|
||||
stream = True
|
||||
conversation_history_origin = []
|
||||
conversation_history = conversation_history_origin.copy()
|
||||
history_messages_num = 2 # 设置为偶数(Q+A),为0则每次不携带历史对话进行独立QA
|
||||
while True:
|
||||
conversation_history = conversation_history_origin.copy()
|
||||
query = input('[Q]: ')
|
||||
conversation_history.append({"role": "user", "content": query})
|
||||
response = client.chat.completions.create(
|
||||
model="minimind",
|
||||
messages=conversation_history,
|
||||
messages=conversation_history[-history_messages_num:],
|
||||
stream=stream
|
||||
)
|
||||
if not stream:
|
||||
|
@ -55,7 +55,7 @@ class ChatRequest(BaseModel):
|
||||
model: str
|
||||
messages: list
|
||||
temperature: float = 0.7
|
||||
top_p: int = 0.92
|
||||
top_p: float = 0.92
|
||||
max_tokens: int = 8192
|
||||
stream: bool = False
|
||||
|
||||
|
@ -1,4 +1,6 @@
|
||||
import os
|
||||
# 设置环境变量
|
||||
os.environ["WANDB_MODE"] = "offline" # 或者使用 "dryrun"
|
||||
import platform
|
||||
import argparse
|
||||
import time
|
||||
@ -19,51 +21,57 @@ from model.model import MiniMindLM
|
||||
from model.LMConfig import LMConfig
|
||||
from model.dataset import SFTDataset
|
||||
|
||||
|
||||
warnings.filterwarnings('ignore')
|
||||
|
||||
|
||||
# 日志记录函数,用于打印训练信息。
|
||||
def Logger(content):
|
||||
if not ddp or dist.get_rank() == 0:
|
||||
print(content)
|
||||
|
||||
|
||||
# 学习率计算函数,用于计算当前学习率。
|
||||
def get_lr(current_step, total_steps, lr):
|
||||
return lr / 10 + 0.5 * lr * (1 + math.cos(math.pi * current_step / total_steps))
|
||||
|
||||
|
||||
# 训练一个epoch的函数,用于训练模型。
|
||||
def train_epoch(epoch, wandb):
|
||||
loss_fct = nn.CrossEntropyLoss(reduction='none')
|
||||
loss_fct = nn.CrossEntropyLoss(reduction='none') #交叉熵损失函数,用于计算损失。
|
||||
start_time = time.time()
|
||||
for step, (X, Y, loss_mask) in enumerate(train_loader):
|
||||
# 将数据移动到指定设备。
|
||||
X = X.to(args.device)
|
||||
Y = Y.to(args.device)
|
||||
loss_mask = loss_mask.to(args.device)
|
||||
# 计算当前学习率。
|
||||
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch, args.learning_rate)
|
||||
# 更新学习率。
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group['lr'] = lr
|
||||
|
||||
with ctx:
|
||||
res = model(X)
|
||||
res = model(X) #获取输出
|
||||
loss = loss_fct(
|
||||
res.logits.view(-1, res.logits.size(-1)),
|
||||
Y.view(-1)
|
||||
).view(Y.size())
|
||||
|
||||
).view(Y.size()) #计算损失
|
||||
|
||||
# 计算损失
|
||||
loss = (loss * loss_mask).sum() / loss_mask.sum()
|
||||
loss += res.aux_loss
|
||||
loss = loss / args.accumulation_steps
|
||||
|
||||
scaler.scale(loss).backward()
|
||||
scaler.scale(loss).backward() #用于处理混合精度训练。它的作用是自动缩放损失值,以防止在使用低精度(如 FP16)计算时出现数值不稳定的问题。
|
||||
|
||||
if (step + 1) % args.accumulation_steps == 0:
|
||||
scaler.unscale_(optimizer)
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
|
||||
scaler.unscale_(optimizer) #PyTorch 自动混合精度(AMP)训练的一部分。它"反缩放"之前为防止在混合精度训练中出现下溢而缩放的梯度。
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip) #应用梯度裁剪以防止梯度爆炸。它会缩放梯度,使其范数不超过args.grad_clip。
|
||||
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
scaler.step(optimizer) #使用优化器更新模型权重,但由缩放器控制以适应混合精度训练。
|
||||
scaler.update() #根据本次迭代是否有梯度溢出来更新下一次迭代的缩放因子。
|
||||
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
optimizer.zero_grad(set_to_none=True) #清空梯度。
|
||||
|
||||
# 如果达到日志记录间隔,则记录日志。
|
||||
if step % args.log_interval == 0:
|
||||
spend_time = time.time() - start_time
|
||||
Logger(
|
||||
@ -94,7 +102,7 @@ def train_epoch(epoch, wandb):
|
||||
torch.save(state_dict, ckp)
|
||||
model.train()
|
||||
|
||||
|
||||
# 初始化模型函数,用于初始化模型。
|
||||
def init_model(lm_config):
|
||||
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
|
||||
model = MiniMindLM(lm_config)
|
||||
@ -106,7 +114,7 @@ def init_model(lm_config):
|
||||
model = model.to(args.device)
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
# 初始化分布式模式函数,用于初始化分布式模式。
|
||||
def init_distributed_mode():
|
||||
if not ddp: return
|
||||
global ddp_local_rank, DEVICE
|
||||
@ -122,12 +130,12 @@ def init_distributed_mode():
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="MiniMind Full SFT")
|
||||
parser.add_argument("--out_dir", type=str, default="out")
|
||||
parser.add_argument("--epochs", type=int, default=1)
|
||||
parser.add_argument("--epochs", type=int, default=3)
|
||||
parser.add_argument("--batch_size", type=int, default=32)
|
||||
parser.add_argument("--learning_rate", type=float, default=5e-5)
|
||||
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
parser.add_argument("--dtype", type=str, default="bfloat16")
|
||||
parser.add_argument("--use_wandb", action="store_true")
|
||||
parser.add_argument("--use_wandb", default=True, action="store_true")
|
||||
parser.add_argument("--wandb_project", type=str, default="MiniMind-Full-SFT")
|
||||
parser.add_argument("--num_workers", type=int, default=1)
|
||||
parser.add_argument("--ddp", action="store_true")
|
||||
@ -137,11 +145,11 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--log_interval", type=int, default=100)
|
||||
parser.add_argument("--save_interval", type=int, default=100)
|
||||
parser.add_argument('--local_rank', type=int, default=-1)
|
||||
parser.add_argument('--dim', default=512, type=int)
|
||||
parser.add_argument('--n_layers', default=8, type=int)
|
||||
parser.add_argument('--max_seq_len', default=512, type=int)
|
||||
parser.add_argument('--dim', default=1024, type=int) #模型维度,用于控制模型的大小。
|
||||
parser.add_argument('--n_layers', default=24, type=int) #层数,用于控制模型层数。
|
||||
parser.add_argument('--max_seq_len', default=1024, type=int) #最大序列长度,用于控制输入序列的最大长度。
|
||||
parser.add_argument('--use_moe', default=False, type=bool)
|
||||
parser.add_argument("--data_path", type=str, default="./dataset/sft_mini_512.jsonl")
|
||||
parser.add_argument("--data_path", type=str, default="./dataset/sft_1024.jsonl")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
@ -161,6 +169,7 @@ if __name__ == "__main__":
|
||||
torch.manual_seed(base_seed)
|
||||
torch.cuda.manual_seed(base_seed)
|
||||
|
||||
# 如果使用分布式模式,则初始化分布式模式。
|
||||
if ddp:
|
||||
init_distributed_mode()
|
||||
args.device = torch.device(DEVICE)
|
||||
@ -169,6 +178,7 @@ if __name__ == "__main__":
|
||||
# 同时设置 CUDA 的随机种子
|
||||
torch.cuda.manual_seed(base_seed + rank)
|
||||
|
||||
# 如果使用WandB,则初始化WandB。
|
||||
if args.use_wandb and (not ddp or ddp_local_rank == 0):
|
||||
import wandb
|
||||
|
||||
@ -176,8 +186,10 @@ if __name__ == "__main__":
|
||||
else:
|
||||
wandb = None
|
||||
|
||||
# 初始化模型。
|
||||
model, tokenizer = init_model(lm_config)
|
||||
|
||||
# 初始化数据集。
|
||||
train_ds = SFTDataset(args.data_path, tokenizer, max_length=lm_config.max_seq_len)
|
||||
train_sampler = DistributedSampler(train_ds) if ddp else None
|
||||
train_loader = DataLoader(
|
||||
@ -190,8 +202,8 @@ if __name__ == "__main__":
|
||||
sampler=train_sampler
|
||||
)
|
||||
|
||||
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16']))
|
||||
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate)
|
||||
scaler = torch.cuda.amp.GradScaler(enabled=(args.dtype in ['float16', 'bfloat16'])) #创建一个梯度缩放器(GradScaler),用于混合精度训练。当模型使用半精度格式(float16或bfloat16)训练时启用,它帮助防止梯度下溢并提高训练效率。
|
||||
optimizer = optim.AdamW(model.parameters(), lr=args.learning_rate) # 创建AdamW优化器实例,负责更新模型参数。它接收模型的所有参数和指定的学习率作为输入。AdamW是Adam优化器的变体,增加了权重衰减的正则化。
|
||||
|
||||
if ddp:
|
||||
model._ddp_params_and_buffers_to_ignore = {"pos_cis"}
|
||||
|
@ -1,4 +1,6 @@
|
||||
import os
|
||||
# 设置环境变量
|
||||
os.environ["WANDB_MODE"] = "offline" # 或者使用 "dryrun"
|
||||
import platform
|
||||
import argparse
|
||||
import time
|
||||
@ -23,47 +25,55 @@ warnings.filterwarnings('ignore')
|
||||
|
||||
|
||||
def Logger(content):
|
||||
# 如果没有使用ddp或者ddp的主设备,那么就打印
|
||||
if not ddp or dist.get_rank() == 0:
|
||||
print(content)
|
||||
|
||||
|
||||
def get_lr(current_step, total_steps, lr):
|
||||
# 更新学习率
|
||||
# \text{get\_lr}(c, t, l) = \frac{l}{10} + 0.5 \cdot l \cdot \left(1 + \cos\left(\frac{\pi \cdot c}{t}\right)\right)
|
||||
return lr / 10 + 0.5 * lr * (1 + math.cos(math.pi * current_step / total_steps))
|
||||
|
||||
|
||||
def train_epoch(epoch, wandb):
|
||||
loss_fct = nn.CrossEntropyLoss(reduction='none')
|
||||
loss_fct = nn.CrossEntropyLoss(reduction='none') #交叉熵损失(Cross-Entropy Loss);当 reduction='none' 时,nn.CrossEntropyLoss 不会对损失进行任何汇总操作,而是返回每个样本的单独损失值。
|
||||
start_time = time.time()
|
||||
for step, (X, Y, loss_mask) in enumerate(train_loader):
|
||||
# 将数据加载到设备上
|
||||
X = X.to(args.device)
|
||||
Y = Y.to(args.device)
|
||||
loss_mask = loss_mask.to(args.device)
|
||||
|
||||
# 更新学习率
|
||||
lr = get_lr(epoch * iter_per_epoch + step, args.epochs * iter_per_epoch, args.learning_rate)
|
||||
for param_group in optimizer.param_groups:
|
||||
param_group['lr'] = lr
|
||||
|
||||
with ctx:
|
||||
res = model(X)
|
||||
res = model(X) #获取输出
|
||||
loss = loss_fct(
|
||||
res.logits.view(-1, res.logits.size(-1)),
|
||||
Y.view(-1)
|
||||
).view(Y.size())
|
||||
loss = (loss * loss_mask).sum() / loss_mask.sum()
|
||||
loss += res.aux_loss
|
||||
).view(Y.size())#计算损失
|
||||
loss = (loss * loss_mask).sum() / loss_mask.sum() #计算总的loss
|
||||
# 为了批次堆叠进行的处理,真正的batch size为num gpu*batch size per gpu*accumulation steps
|
||||
loss += res.aux_loss
|
||||
loss = loss / args.accumulation_steps
|
||||
|
||||
scaler.scale(loss).backward()
|
||||
scaler.scale(loss).backward() #用于处理混合精度训练。它的作用是自动缩放损失值,以防止在使用低精度(如 FP16)计算时出现数值不稳定的问题。
|
||||
|
||||
# 如果达到堆叠数目就进行处理
|
||||
if (step + 1) % args.accumulation_steps == 0:
|
||||
scaler.unscale_(optimizer)
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
|
||||
scaler.unscale_(optimizer) #PyTorch 自动混合精度(AMP)训练的一部分。它"反缩放"之前为防止在混合精度训练中出现下溢而缩放的梯度。
|
||||
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip) #应用梯度裁剪以防止梯度爆炸。它会缩放梯度,使其范数不超过args.grad_clip。
|
||||
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
scaler.step(optimizer) #使用优化器更新模型权重,但由缩放器控制以适应混合精度训练。
|
||||
scaler.update() #根据本次迭代是否有梯度溢出来更新下一次迭代的缩放因子。
|
||||
|
||||
optimizer.zero_grad(set_to_none=True)
|
||||
optimizer.zero_grad(set_to_none=True) #为下一次迭代清零所有梯度。set_to_none=True参数通过将梯度设置为None而不是零来提高内存效率。
|
||||
|
||||
# 打印日志
|
||||
if step % args.log_interval == 0:
|
||||
spend_time = time.time() - start_time
|
||||
Logger(
|
||||
@ -81,37 +91,41 @@ def train_epoch(epoch, wandb):
|
||||
"lr": optimizer.param_groups[-1]['lr'],
|
||||
"epoch_Time": spend_time / (step + 1) * iter_per_epoch // 60 - spend_time // 60})
|
||||
|
||||
# 保存模型
|
||||
if (step + 1) % args.save_interval == 0 and (not ddp or dist.get_rank() == 0):
|
||||
model.eval()
|
||||
moe_path = '_moe' if lm_config.use_moe else ''
|
||||
ckp = f'{args.save_dir}/pretrain_{lm_config.dim}{moe_path}.pth'
|
||||
|
||||
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
|
||||
state_dict = model.module.state_dict()
|
||||
state_dict = model.module.state_dict() #获取模型参数
|
||||
else:
|
||||
state_dict = model.state_dict()
|
||||
state_dict = model.state_dict() #获取模型参数
|
||||
|
||||
torch.save(state_dict, ckp)
|
||||
torch.save(state_dict, ckp) #只保存参数
|
||||
model.train()
|
||||
|
||||
|
||||
def init_model(lm_config):
|
||||
# 加载tokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained('./model/minimind_tokenizer')
|
||||
# 加载模型
|
||||
model = MiniMindLM(lm_config).to(args.device)
|
||||
# 打印模型参数
|
||||
Logger(f'LLM总参数量:{sum(p.numel() for p in model.parameters() if p.requires_grad) / 1e6:.3f} 百万')
|
||||
return model, tokenizer
|
||||
|
||||
|
||||
def init_distributed_mode():
|
||||
if not ddp: return
|
||||
global ddp_local_rank, DEVICE
|
||||
if not ddp: return #如果没有启用分布式数据并行(DDP),直接返回,不执行任何操作。
|
||||
global ddp_local_rank, DEVICE #声明这两个变量为全局变量,以便在函数外部也能访问它们。
|
||||
|
||||
dist.init_process_group(backend="nccl")
|
||||
ddp_rank = int(os.environ["RANK"])
|
||||
ddp_local_rank = int(os.environ["LOCAL_RANK"])
|
||||
ddp_world_size = int(os.environ["WORLD_SIZE"])
|
||||
DEVICE = f"cuda:{ddp_local_rank}"
|
||||
torch.cuda.set_device(DEVICE)
|
||||
dist.init_process_group(backend="nccl") #初始化分布式进程组,使用NCCL后端(NVIDIA Collective Communications Library),这是NVIDIA GPU之间通信的优化库。
|
||||
ddp_rank = int(os.environ["RANK"]) #从环境变量获取当前进程的全局编号。
|
||||
ddp_local_rank = int(os.environ["LOCAL_RANK"]) #从环境变量获取当前进程的本地编号。
|
||||
ddp_world_size = int(os.environ["WORLD_SIZE"]) #从环境变量获取当前进程组中的进程总数。
|
||||
DEVICE = f"cuda:{ddp_local_rank}" #根据本地编号选择GPU设备。
|
||||
torch.cuda.set_device(DEVICE) #设置当前进程的GPU设备。
|
||||
|
||||
|
||||
# torchrun --nproc_per_node 2 1-pretrain.py
|
||||
@ -119,34 +133,35 @@ if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="MiniMind Pretraining")
|
||||
parser.add_argument("--out_dir", type=str, default="out")
|
||||
# 若要以最快速度实现zero则epochs设置为1轮;否则应当利用有限的数据训练2~6个epochs。
|
||||
parser.add_argument("--epochs", type=int, default=1)
|
||||
parser.add_argument("--epochs", type=int, default=3)
|
||||
parser.add_argument("--batch_size", type=int, default=32)
|
||||
parser.add_argument("--learning_rate", type=float, default=5e-4)
|
||||
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
parser.add_argument("--device", type=str, default="cuda:0" if torch.cuda.is_available() else "cpu") #如果GPU可用,则使用GPU,否则使用CPU。
|
||||
parser.add_argument("--dtype", type=str, default="bfloat16")
|
||||
parser.add_argument("--use_wandb", action="store_true")
|
||||
parser.add_argument("--use_wandb", default=True, action="store_true")
|
||||
parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain")
|
||||
parser.add_argument("--num_workers", type=int, default=1)
|
||||
parser.add_argument("--num_workers", type=int, default=8)
|
||||
parser.add_argument("--ddp", action="store_true")
|
||||
parser.add_argument("--accumulation_steps", type=int, default=8)
|
||||
parser.add_argument("--grad_clip", type=float, default=1.0)
|
||||
parser.add_argument("--warmup_iters", type=int, default=0)
|
||||
parser.add_argument("--log_interval", type=int, default=100)
|
||||
parser.add_argument("--save_interval", type=int, default=100)
|
||||
parser.add_argument('--local_rank', type=int, default=-1)
|
||||
parser.add_argument('--dim', default=512, type=int)
|
||||
parser.add_argument('--n_layers', default=8, type=int)
|
||||
parser.add_argument('--max_seq_len', default=512, type=int)
|
||||
parser.add_argument('--use_moe', default=False, type=bool)
|
||||
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl")
|
||||
parser.add_argument("--accumulation_steps", type=int, default=8) #梯度累积步数,用于控制梯度更新频率。
|
||||
parser.add_argument("--grad_clip", type=float, default=1.0) #梯度裁剪阈值,用于防止梯度爆炸。
|
||||
parser.add_argument("--warmup_iters", type=int, default=0) #预热迭代次数,用于控制学习率预热过程。
|
||||
parser.add_argument("--log_interval", type=int, default=100) #日志打印间隔,用于控制日志打印的频率。
|
||||
parser.add_argument("--save_interval", type=int, default=100) #模型保存间隔,用于控制模型保存的频率。
|
||||
parser.add_argument('--local_rank', type=int, default=-1) #本地进程编号,用于分布式训练。
|
||||
parser.add_argument('--dim', default=1024, type=int) #模型维度,用于控制模型的大小。
|
||||
parser.add_argument('--n_layers', default=24, type=int) #层数,用于控制模型层数。
|
||||
parser.add_argument('--max_seq_len', default=1024, type=int) #最大序列长度,用于控制输入序列的最大长度。
|
||||
parser.add_argument('--use_moe', default=False, type=bool) #是否使用MOE,用于控制是否使用MOE。
|
||||
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") #数据路径,用于控制数据集的路径。
|
||||
args = parser.parse_args()
|
||||
|
||||
lm_config = LMConfig(dim=args.dim, n_layers=args.n_layers, max_seq_len=args.max_seq_len, use_moe=args.use_moe)
|
||||
args.save_dir = os.path.join(args.out_dir)
|
||||
os.makedirs(args.save_dir, exist_ok=True)
|
||||
os.makedirs(args.out_dir, exist_ok=True)
|
||||
tokens_per_iter = args.batch_size * lm_config.max_seq_len
|
||||
device_type = "cuda" if "cuda" in args.device else "cpu"
|
||||
lm_config = LMConfig(dim=args.dim, n_layers=args.n_layers, max_seq_len=args.max_seq_len, use_moe=args.use_moe) #创建LMConfig对象,用于控制模型配置。
|
||||
args.save_dir = os.path.join(args.out_dir) #创建保存目录。
|
||||
os.makedirs(args.save_dir, exist_ok=True) #创建保存目录。
|
||||
os.makedirs(args.out_dir, exist_ok=True) #创建输出目录。
|
||||
tokens_per_iter = args.batch_size * lm_config.max_seq_len #计算每个迭代步骤的token数量。
|
||||
print(f"tokens_per_iter: {tokens_per_iter}")
|
||||
device_type = "cuda" if "cuda" in args.device else "cpu" #确定设备类型。
|
||||
|
||||
args.wandb_run_name = f"MiniMind-Pretrain-Epoch-{args.epochs}-BatchSize-{args.batch_size}-LearningRate-{args.learning_rate}"
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user