Compare commits
2 Commits
afd4fd1f0f
...
2f6995d667
| Author | SHA1 | Date | |
|---|---|---|---|
| 2f6995d667 | |||
| cb3152dc94 |
@ -50,6 +50,12 @@ class LMConfig(PretrainedConfig):
|
|||||||
use_token_memory: bool = True, # 🔥 1.4.6: 新增token-based memory flag
|
use_token_memory: bool = True, # 🔥 1.4.6: 新增token-based memory flag
|
||||||
freeze_ratio: float = 0.2, # 🔥 新增: memory_bank冻结率 (0.0表示不冻结,0.2表示20%条目不更新)
|
freeze_ratio: float = 0.2, # 🔥 新增: memory_bank冻结率 (0.0表示不冻结,0.2表示20%条目不更新)
|
||||||
####################################################
|
####################################################
|
||||||
|
# Experiment 1.4.9: Gumbel-Softmax + Diversity Loss
|
||||||
|
####################################################
|
||||||
|
num_candidates: int = 32, # 🔥 实验1.4.9: 候选记忆条目数量
|
||||||
|
num_selected: int = 1, # 🔥 实验1.4.9: 选中的记忆条目数量 (现在只选1个最佳)
|
||||||
|
gumbel_temperature: float = 1.0, # 🔥 实验1.4.9: Gumbel-Softmax温度参数
|
||||||
|
####################################################
|
||||||
# Triple extraction related configurations
|
# Triple extraction related configurations
|
||||||
####################################################
|
####################################################
|
||||||
max_subject_len: int = 8,
|
max_subject_len: int = 8,
|
||||||
@ -99,6 +105,12 @@ class LMConfig(PretrainedConfig):
|
|||||||
self.use_token_memory = use_token_memory # 🔥 1.4.6: token-based memory flag
|
self.use_token_memory = use_token_memory # 🔥 1.4.6: token-based memory flag
|
||||||
self.freeze_ratio = freeze_ratio # 🔥 新增: memory_bank冻结率
|
self.freeze_ratio = freeze_ratio # 🔥 新增: memory_bank冻结率
|
||||||
####################################################
|
####################################################
|
||||||
|
# Experiment 1.4.9: Gumbel-Softmax + Diversity Loss
|
||||||
|
####################################################
|
||||||
|
self.num_candidates = num_candidates
|
||||||
|
self.num_selected = num_selected
|
||||||
|
self.gumbel_temperature = gumbel_temperature
|
||||||
|
####################################################
|
||||||
# Triple extraction related configurations
|
# Triple extraction related configurations
|
||||||
####################################################
|
####################################################
|
||||||
self.max_subject_len = max_subject_len
|
self.max_subject_len = max_subject_len
|
||||||
|
|||||||
@ -123,14 +123,15 @@ class Attention(nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class MemoryGate(nn.Module):
|
class MemoryGate(nn.Module):
|
||||||
"""Product Key Memory-based gate mechanism for memory selection"""
|
"""Product Key Memory-based gate mechanism for memory selection with Gumbel-Softmax"""
|
||||||
def __init__(self, config: LMConfig):
|
def __init__(self, config: LMConfig):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.config = config
|
self.config = config
|
||||||
self.dim = config.dim
|
self.dim = config.dim
|
||||||
self.knowledge_num = config.knowledge_num
|
self.knowledge_num = config.knowledge_num
|
||||||
self.knowledge_dim = config.knowledge_dim
|
self.knowledge_dim = config.knowledge_dim
|
||||||
self.num_selected = getattr(config, 'num_selected', 16)
|
self.num_candidates = getattr(config, 'num_candidates', 32) # Generate 32 candidates
|
||||||
|
self.num_selected = getattr(config, 'num_selected', 1) # Select 1 best from candidates
|
||||||
|
|
||||||
# 确保知识库数量是完全平方数
|
# 确保知识库数量是完全平方数
|
||||||
assert int(self.knowledge_num ** 0.5) ** 2 == self.knowledge_num, \
|
assert int(self.knowledge_num ** 0.5) ** 2 == self.knowledge_num, \
|
||||||
@ -169,29 +170,28 @@ class MemoryGate(nn.Module):
|
|||||||
scores_1 = torch.einsum('bsd,kd->bsk', q1, self.keys[0]) # [batch, seq_len, num_keys]
|
scores_1 = torch.einsum('bsd,kd->bsk', q1, self.keys[0]) # [batch, seq_len, num_keys]
|
||||||
scores_2 = torch.einsum('bsd,kd->bsk', q2, self.keys[1]) # [batch, seq_len, num_keys]
|
scores_2 = torch.einsum('bsd,kd->bsk', q2, self.keys[1]) # [batch, seq_len, num_keys]
|
||||||
|
|
||||||
# 获取top-k
|
# 获取top-k candidates (now using num_candidates instead of num_selected)
|
||||||
topk_scores_1, topk_indices_1 = scores_1.topk(self.num_selected, dim=-1)
|
topk_scores_1, topk_indices_1 = scores_1.topk(self.num_candidates, dim=-1)
|
||||||
topk_scores_2, topk_indices_2 = scores_2.topk(self.num_selected, dim=-1)
|
topk_scores_2, topk_indices_2 = scores_2.topk(self.num_candidates, dim=-1)
|
||||||
|
|
||||||
# 组合product key的结果
|
# 组合product key的结果
|
||||||
combined_scores = topk_scores_1.unsqueeze(-1) + topk_scores_2.unsqueeze(-2) # [batch, seq_len, num_selected, num_selected]
|
combined_scores = topk_scores_1.unsqueeze(-1) + topk_scores_2.unsqueeze(-2) # [batch, seq_len, num_candidates, num_candidates]
|
||||||
combined_indices = topk_indices_1.unsqueeze(-1) * self.num_keys + topk_indices_2.unsqueeze(-2) # [batch, seq_len, num_selected, num_selected]
|
combined_indices = topk_indices_1.unsqueeze(-1) * self.num_keys + topk_indices_2.unsqueeze(-2) # [batch, seq_len, num_candidates, num_candidates]
|
||||||
|
|
||||||
# 展平并选择最终的top-k
|
# 展平并选择最终的top-k candidates
|
||||||
combined_scores = combined_scores.view(bsz, seq_len, -1)
|
combined_scores = combined_scores.view(bsz, seq_len, -1)
|
||||||
combined_indices = combined_indices.view(bsz, seq_len, -1)
|
combined_indices = combined_indices.view(bsz, seq_len, -1)
|
||||||
|
|
||||||
final_scores, final_pk_indices = combined_scores.topk(self.num_selected, dim=-1)
|
candidate_scores, candidate_pk_indices = combined_scores.topk(self.num_candidates, dim=-1)
|
||||||
memory_indices = combined_indices.gather(-1, final_pk_indices)
|
candidate_indices = combined_indices.gather(-1, candidate_pk_indices) # [batch, seq_len, num_candidates]
|
||||||
|
|
||||||
# 归一化分数
|
# 归一化候选分数
|
||||||
memory_scores = F.softmax(final_scores, dim=-1)
|
candidate_scores = F.softmax(candidate_scores, dim=-1)
|
||||||
memory_scores = self.dropout(memory_scores)
|
candidate_scores = self.dropout(candidate_scores)
|
||||||
|
|
||||||
# 计算平衡损失和监控统计
|
# 返回候选项用于后续的相似度选择
|
||||||
balance_loss, stats = self._compute_balance_loss_and_stats(memory_indices, memory_scores)
|
# 注意:这里返回候选项,在MiniMindBlock中进行相似度选择和多样性损失计算
|
||||||
|
return candidate_indices, candidate_scores, None, {}
|
||||||
return memory_indices, memory_scores, balance_loss, stats
|
|
||||||
|
|
||||||
def _compute_balance_loss_and_stats(self, memory_indices, memory_scores):
|
def _compute_balance_loss_and_stats(self, memory_indices, memory_scores):
|
||||||
"""
|
"""
|
||||||
@ -276,10 +276,10 @@ class GatedMemoryFusion(nn.Module):
|
|||||||
self.config = config
|
self.config = config
|
||||||
self.dim = config.dim
|
self.dim = config.dim
|
||||||
self.knowledge_dim = config.knowledge_dim
|
self.knowledge_dim = config.knowledge_dim
|
||||||
self.num_selected = getattr(config, 'num_selected', 16)
|
self.num_selected = getattr(config, 'num_selected', 1) # Now we select 1 best memory
|
||||||
|
|
||||||
# 输入维度:dim (h_attn) + num_selected * knowledge_dim (选中的记忆)
|
# 输入维度:dim (h_attn) + num_selected * dim (选中的记忆,现在只有1个)
|
||||||
# 实验1.4.6:记忆解码后立即压缩回knowledge_dim避免显存爆炸
|
# 实验1.4.9:修改为只选择1个最佳记忆
|
||||||
concat_dim = self.dim + self.num_selected * self.dim
|
concat_dim = self.dim + self.num_selected * self.dim
|
||||||
|
|
||||||
# 类似SwiGLU的门控MLP结构
|
# 类似SwiGLU的门控MLP结构
|
||||||
@ -289,23 +289,18 @@ class GatedMemoryFusion(nn.Module):
|
|||||||
|
|
||||||
self.dropout = nn.Dropout(config.dropout)
|
self.dropout = nn.Dropout(config.dropout)
|
||||||
|
|
||||||
def forward(self, h_attn: torch.Tensor, selected_memories: torch.Tensor, memory_scores: torch.Tensor):
|
def forward(self, h_attn: torch.Tensor, selected_memory: torch.Tensor):
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
h_attn: [batch_size, seq_len, dim] - Self attention output
|
h_attn: [batch_size, seq_len, dim] - Self attention output
|
||||||
selected_memories: [batch_size, seq_len, num_selected, knowledge_dim] - Selected memory data
|
selected_memory: [batch_size, seq_len, dim] - Selected single best memory
|
||||||
memory_scores: [batch_size, seq_len, num_selected] - Memory selection weights (not used in concatenation approach)
|
|
||||||
Returns:
|
Returns:
|
||||||
output: [batch_size, seq_len, dim]
|
output: [batch_size, seq_len, dim]
|
||||||
"""
|
"""
|
||||||
bsz, seq_len, _ = h_attn.shape
|
bsz, seq_len, _ = h_attn.shape
|
||||||
|
|
||||||
# 将选中的记忆展平为一维向量
|
# 拼接h_attn和最佳记忆
|
||||||
# [batch, seq_len, num_selected, knowledge_dim] -> [batch, seq_len, num_selected * knowledge_dim]
|
concat_input = torch.cat([h_attn, selected_memory], dim=-1) # [batch, seq_len, dim + dim]
|
||||||
memory_flat = selected_memories.reshape(bsz, seq_len, -1)
|
|
||||||
|
|
||||||
# 拼接h_attn和记忆信息
|
|
||||||
concat_input = torch.cat([h_attn, memory_flat], dim=-1) # [batch, seq_len, dim + num_selected * dim]
|
|
||||||
|
|
||||||
# 门控MLP处理(类似SwiGLU)
|
# 门控MLP处理(类似SwiGLU)
|
||||||
gate = F.silu(self.gate_proj(concat_input)) # [batch, seq_len, dim]
|
gate = F.silu(self.gate_proj(concat_input)) # [batch, seq_len, dim]
|
||||||
@ -337,22 +332,96 @@ class MiniMindBlock(nn.Module):
|
|||||||
self.memory_gate = MemoryGate(config)
|
self.memory_gate = MemoryGate(config)
|
||||||
self.gated_memory_fusion = GatedMemoryFusion(config)
|
self.gated_memory_fusion = GatedMemoryFusion(config)
|
||||||
|
|
||||||
|
# Gumbel-Softmax参数
|
||||||
|
self.gumbel_temperature = getattr(config, 'gumbel_temperature', 1.0)
|
||||||
|
|
||||||
# self.attentionpool = nn.Linear(config.dim, 1)
|
# self.attentionpool = nn.Linear(config.dim, 1)
|
||||||
|
|
||||||
|
def gumbel_softmax_selection(self, similarity_scores, temperature=1.0, hard=True):
|
||||||
|
"""
|
||||||
|
使用Gumbel-Softmax进行可微分的离散选择
|
||||||
|
|
||||||
|
Args:
|
||||||
|
similarity_scores: [batch_size, seq_len, num_candidates] - 相似度分数
|
||||||
|
temperature: Gumbel-Softmax温度参数
|
||||||
|
hard: 是否使用硬选择(one-hot)
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
selection_weights: [batch_size, seq_len, num_candidates] - 选择权重
|
||||||
|
selected_indices: [batch_size, seq_len] - 选中的索引(用于统计)
|
||||||
|
"""
|
||||||
|
# 添加Gumbel噪声
|
||||||
|
gumbel_noise = -torch.log(-torch.log(torch.rand_like(similarity_scores) + 1e-20) + 1e-20)
|
||||||
|
logits = (similarity_scores + gumbel_noise) / temperature
|
||||||
|
|
||||||
|
# Softmax
|
||||||
|
soft_weights = F.softmax(logits, dim=-1)
|
||||||
|
|
||||||
|
if hard:
|
||||||
|
# 硬选择:创建one-hot向量
|
||||||
|
_, max_indices = soft_weights.max(dim=-1, keepdim=True)
|
||||||
|
hard_weights = torch.zeros_like(soft_weights).scatter_(-1, max_indices, 1.0)
|
||||||
|
# 使用straight-through estimator
|
||||||
|
selection_weights = hard_weights - soft_weights.detach() + soft_weights
|
||||||
|
selected_indices = max_indices.squeeze(-1) # [batch_size, seq_len]
|
||||||
|
else:
|
||||||
|
# 软选择
|
||||||
|
selection_weights = soft_weights
|
||||||
|
selected_indices = torch.argmax(soft_weights, dim=-1)
|
||||||
|
|
||||||
|
return selection_weights, selected_indices
|
||||||
|
|
||||||
|
def compute_diversity_loss(self, candidate_memories):
|
||||||
|
"""
|
||||||
|
计算候选集内部多样性损失(鼓励候选项之间的差异性)
|
||||||
|
|
||||||
|
Args:
|
||||||
|
candidate_memories: [batch_size, seq_len, num_candidates, dim]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
diversity_loss: 标量张量
|
||||||
|
"""
|
||||||
|
bsz, seq_len, num_candidates, dim = candidate_memories.shape
|
||||||
|
|
||||||
|
# 计算候选项之间的相似度矩阵
|
||||||
|
# 归一化候选记忆用于计算余弦相似度
|
||||||
|
normalized_memories = F.normalize(candidate_memories, p=2, dim=-1) # [batch, seq_len, num_candidates, dim]
|
||||||
|
|
||||||
|
# 计算相似度矩阵: [batch, seq_len, num_candidates, num_candidates]
|
||||||
|
similarity_matrix = torch.matmul(normalized_memories, normalized_memories.transpose(-2, -1))
|
||||||
|
|
||||||
|
# 移除对角线(自相似度=1)
|
||||||
|
mask = torch.eye(num_candidates, device=candidate_memories.device).bool()
|
||||||
|
mask = mask.unsqueeze(0).unsqueeze(0).expand(bsz, seq_len, -1, -1)
|
||||||
|
|
||||||
|
# 计算非对角线元素的平均相似度(希望越小越好,表示越多样)
|
||||||
|
off_diagonal_similarities = similarity_matrix.masked_select(~mask)
|
||||||
|
avg_similarity = off_diagonal_similarities.mean()
|
||||||
|
|
||||||
|
# 多样性损失:相似度越高,损失越大
|
||||||
|
diversity_loss = avg_similarity
|
||||||
|
|
||||||
|
return diversity_loss
|
||||||
|
|
||||||
def forward(self, x, pos_cis, memory_bank, tok_embeddings, collect_ema_stats=False):
|
def forward(self, x, pos_cis, memory_bank, tok_embeddings, collect_ema_stats=False):
|
||||||
"""
|
"""
|
||||||
|
实验1.4.9: Gumbel-Softmax + 多样性损失 + 可微分相似度损失
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
x: [batch_size, seq_len, dim]
|
x: [batch_size, seq_len, dim]
|
||||||
pos_cis: positional encoding
|
pos_cis: positional encoding
|
||||||
memory_bank: [knowledge_num, knowledge_dim] - shared memory bank
|
memory_bank: [knowledge_num, knowledge_length] - shared memory bank with token IDs
|
||||||
|
tok_embeddings: token embedding layer
|
||||||
collect_ema_stats: 是否收集EMA更新统计信息
|
collect_ema_stats: 是否收集EMA更新统计信息
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
out: [batch_size, seq_len, dim]
|
out: [batch_size, seq_len, dim]
|
||||||
balance_loss: 该层的平衡损失
|
balance_loss: 该层的平衡损失 (从候选项计算)
|
||||||
|
similarity_loss: 相似度损失 (可微分)
|
||||||
|
diversity_loss: 多样性损失
|
||||||
layer_stats: 该层的监控统计信息
|
layer_stats: 该层的监控统计信息
|
||||||
ema_stats: EMA更新统计信息(如果collect_ema_stats=True)
|
ema_stats: EMA更新统计信息(如果collect_ema_stats=True)
|
||||||
cosine_stats: 查找向量与选中记忆条目的余弦相似度统计信息
|
cosine_stats: 查找向量与候选记忆条目的余弦相似度统计信息
|
||||||
"""
|
"""
|
||||||
# Self attention
|
# Self attention
|
||||||
h_attn = self.attention(self.attention_norm(x), pos_cis)
|
h_attn = self.attention(self.attention_norm(x), pos_cis)
|
||||||
@ -361,68 +430,147 @@ class MiniMindBlock(nn.Module):
|
|||||||
# 使用h_attn作为门控和交叉注意力的输入(核心:self attention的输出)
|
# 使用h_attn作为门控和交叉注意力的输入(核心:self attention的输出)
|
||||||
h_for_memory = self.memory_norm(h_attn)
|
h_for_memory = self.memory_norm(h_attn)
|
||||||
|
|
||||||
# 门控选择记忆
|
# 🔥 新架构:生成32个候选项
|
||||||
memory_indices, memory_scores, balance_loss, layer_stats = self.memory_gate(h_for_memory)
|
candidate_indices, candidate_scores, _, _ = self.memory_gate(h_for_memory)
|
||||||
|
# candidate_indices: [batch, seq_len, num_candidates]
|
||||||
|
# candidate_scores: [batch, seq_len, num_candidates]
|
||||||
|
|
||||||
# 根据索引获取记忆数据 - 实验1.4.6:解码token_id为特征向量
|
bsz, seq_len, num_candidates = candidate_indices.shape
|
||||||
bsz, seq_len, num_selected = memory_indices.shape
|
|
||||||
memory_indices_flat = memory_indices.view(-1)
|
|
||||||
selected_token_ids = memory_bank[memory_indices_flat] # [batch * seq_len * num_selected, knowledge_length]
|
|
||||||
|
|
||||||
# 解码token_ids为特征向量并立即压缩避免显存爆炸
|
# 解码候选token_ids为特征向量
|
||||||
selected_embeddings = tok_embeddings(selected_token_ids) # [batch * seq_len * num_selected, knowledge_length, dim]
|
candidate_indices_flat = candidate_indices.view(-1) # [batch * seq_len * num_candidates]
|
||||||
|
candidate_token_ids = memory_bank[candidate_indices_flat] # [batch * seq_len * num_candidates, knowledge_length]
|
||||||
|
|
||||||
# 立即压缩:knowledge_length * dim -> knowledge_dim 避免显存爆炸
|
# 解码为embeddings并池化
|
||||||
# 使用平均池化压缩knowledge_length维度
|
candidate_embeddings = tok_embeddings(candidate_token_ids) # [batch * seq_len * num_candidates, knowledge_length, dim]
|
||||||
pooled_memory = selected_embeddings.mean(dim=1) # [batch * seq_len * num_selected, dim]
|
candidate_memories = candidate_embeddings.mean(dim=1) # [batch * seq_len * num_candidates, dim]
|
||||||
# attn_weights = self.attentionpool(selected_embeddings)
|
candidate_memories = candidate_memories.view(bsz, seq_len, num_candidates, self.dim) # [batch, seq_len, num_candidates, dim]
|
||||||
# attn_weights = torch.softmax(attn_weights, dim=1)
|
|
||||||
# pooled_memory = torch.sum(selected_embeddings * attn_weights, dim=1)
|
|
||||||
|
|
||||||
selected_memory = pooled_memory.view(bsz, seq_len, num_selected, self.dim) # [batch, seq_len, num_selected, dim]
|
# 🔥 核心改进: 计算可微分的相似度分数 (移除no_grad)
|
||||||
|
h_expanded = h_for_memory.unsqueeze(2).expand(-1, -1, num_candidates, -1) # [batch, seq_len, num_candidates, dim]
|
||||||
|
similarity_scores = F.cosine_similarity(h_expanded, candidate_memories, dim=-1) # [batch, seq_len, num_candidates]
|
||||||
|
|
||||||
# 门控MLP融合:串型连接h_attn和选中的记忆
|
# 🔥 使用Gumbel-Softmax选择最佳候选项
|
||||||
memory_output = self.gated_memory_fusion(h_for_memory, selected_memory, memory_scores)
|
selection_weights, selected_indices = self.gumbel_softmax_selection(
|
||||||
|
similarity_scores,
|
||||||
|
temperature=self.gumbel_temperature,
|
||||||
|
hard=True
|
||||||
|
) # selection_weights: [batch, seq_len, num_candidates], selected_indices: [batch, seq_len]
|
||||||
|
|
||||||
|
# 🔥 计算相似度损失 (现在是可微分的!)
|
||||||
|
# 相似度损失:希望选中的记忆与查询向量相似度尽可能高
|
||||||
|
selected_similarities = (similarity_scores * selection_weights).sum(dim=-1) # [batch, seq_len]
|
||||||
|
similarity_loss = -selected_similarities.mean() # 负号:相似度越高,损失越小
|
||||||
|
|
||||||
|
# 🔥 计算候选集多样性损失
|
||||||
|
diversity_loss = self.compute_diversity_loss(candidate_memories)
|
||||||
|
|
||||||
|
# 🔥 使用selection_weights进行加权选择最终记忆
|
||||||
|
selected_memory = (candidate_memories * selection_weights.unsqueeze(-1)).sum(dim=2) # [batch, seq_len, dim]
|
||||||
|
|
||||||
|
# 门控MLP融合:只融合选中的单个最佳记忆
|
||||||
|
memory_output = self.gated_memory_fusion(h_for_memory, selected_memory)
|
||||||
|
|
||||||
# 残差连接
|
# 残差连接
|
||||||
out = h + memory_output
|
out = h + memory_output
|
||||||
|
|
||||||
# 🔍 新增: 计算查找向量与选中记忆条目的余弦相似度
|
# 🔥 计算平衡损失和统计信息 (基于候选项的选择分布)
|
||||||
with torch.no_grad():
|
balance_loss, layer_stats = self._compute_candidate_balance_stats(candidate_indices, selection_weights)
|
||||||
|
|
||||||
# 扩展查找向量维度以匹配selected_memory
|
# 🔥 计算详细的相似度统计信息
|
||||||
h_expanded = h_for_memory.unsqueeze(2).expand(-1, -1, num_selected, -1) # [batch, seq_len, num_selected, dim]
|
cosine_stats = {
|
||||||
|
'similarity_scores': similarity_scores, # [batch, seq_len, num_candidates]
|
||||||
|
'selected_similarities': selected_similarities, # [batch, seq_len]
|
||||||
|
'avg_similarity': similarity_scores.mean().item(), # 平均相似度
|
||||||
|
'max_similarity': similarity_scores.max().item(), # 最大相似度
|
||||||
|
'min_similarity': similarity_scores.min().item(), # 最小相似度
|
||||||
|
'selected_avg_similarity': selected_similarities.mean().item(), # 选中记忆的平均相似度
|
||||||
|
'selection_entropy': -torch.sum(selection_weights * torch.log(selection_weights + 1e-10), dim=-1).mean().item() # 选择熵
|
||||||
|
}
|
||||||
|
|
||||||
# 计算余弦相似度:cosine_sim(query, memory) for each selected memory
|
# 收集EMA更新统计信息(现在基于选中的记忆)
|
||||||
cosine_similarities = F.cosine_similarity(
|
|
||||||
h_expanded, # [batch, seq_len, num_selected, dim]
|
|
||||||
selected_memory, # [batch, seq_len, num_selected, knowledge_dim]
|
|
||||||
dim=-1 # 在knowledge_dim维度计算余弦相似度
|
|
||||||
) # [batch, seq_len, num_selected]
|
|
||||||
|
|
||||||
# 计算余弦相似度统计信息
|
|
||||||
cosine_stats = {
|
|
||||||
'cosine_similarities': cosine_similarities, # [batch, seq_len, num_selected]
|
|
||||||
'avg_cosine_similarity': cosine_similarities.mean().item(), # 平均余弦相似度
|
|
||||||
'max_cosine_similarity': cosine_similarities.max().item(), # 最大余弦相似度
|
|
||||||
'min_cosine_similarity': cosine_similarities.min().item(), # 最小余弦相似度
|
|
||||||
'std_cosine_similarity': cosine_similarities.std().item(), # 余弦相似度标准差
|
|
||||||
}
|
|
||||||
|
|
||||||
# 收集EMA更新统计信息(仅在训练时且启用时)
|
|
||||||
ema_stats = None
|
ema_stats = None
|
||||||
if collect_ema_stats and self.training:
|
if collect_ema_stats and self.training:
|
||||||
|
# 扩展选中的索引以匹配EMA更新的期望格式
|
||||||
|
selected_memory_indices = candidate_indices.gather(2, selected_indices.unsqueeze(-1)) # [batch, seq_len, 1]
|
||||||
ema_stats = {
|
ema_stats = {
|
||||||
'memory_indices': memory_indices, # [batch, seq_len, num_selected]
|
'memory_indices': selected_memory_indices, # [batch, seq_len, 1]
|
||||||
'memory_scores': memory_scores, # [batch, seq_len, num_selected]
|
'memory_scores': torch.ones_like(selected_memory_indices.float()), # [batch, seq_len, 1] - 选中的权重为1
|
||||||
'h_for_memory': h_for_memory, # [batch, seq_len, dim]
|
'h_for_memory': h_for_memory, # [batch, seq_len, dim]
|
||||||
'selected_memory': selected_memory, # [batch, seq_len, num_selected, knowledge_dim]
|
'selected_memory': selected_memory.unsqueeze(2), # [batch, seq_len, 1, dim]
|
||||||
}
|
}
|
||||||
|
|
||||||
if collect_ema_stats:
|
if collect_ema_stats:
|
||||||
return out, balance_loss, layer_stats, ema_stats, cosine_stats
|
return out, balance_loss, similarity_loss, diversity_loss, layer_stats, ema_stats, cosine_stats
|
||||||
else:
|
else:
|
||||||
return out, balance_loss, layer_stats, cosine_stats
|
return out, balance_loss, similarity_loss, diversity_loss, layer_stats, cosine_stats
|
||||||
|
|
||||||
|
def _compute_candidate_balance_stats(self, candidate_indices, selection_weights):
|
||||||
|
"""
|
||||||
|
计算基于候选项选择的平衡损失和统计信息
|
||||||
|
|
||||||
|
Args:
|
||||||
|
candidate_indices: [batch_size, seq_len, num_candidates]
|
||||||
|
selection_weights: [batch_size, seq_len, num_candidates] - Gumbel-Softmax权重
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
balance_loss: 标量张量
|
||||||
|
stats: 统计信息字典
|
||||||
|
"""
|
||||||
|
bsz, seq_len, num_candidates = candidate_indices.shape
|
||||||
|
device = candidate_indices.device
|
||||||
|
|
||||||
|
# 使用加权统计每个记忆条目被选中的概率
|
||||||
|
flat_indices = candidate_indices.view(-1) # [batch * seq_len * num_candidates]
|
||||||
|
flat_weights = selection_weights.view(-1) # [batch * seq_len * num_candidates]
|
||||||
|
|
||||||
|
# 统计每个记忆条目被选中的加权次数
|
||||||
|
memory_counts = torch.zeros(self.config.knowledge_num, device=device)
|
||||||
|
memory_counts.scatter_add_(0, flat_indices, flat_weights)
|
||||||
|
|
||||||
|
# 计算选择概率分布
|
||||||
|
total_selections = memory_counts.sum()
|
||||||
|
memory_probs = memory_counts / (total_selections + 1e-10)
|
||||||
|
|
||||||
|
# 计算KL散度损失(与均匀分布的KL散度)
|
||||||
|
uniform_prob = 1.0 / self.config.knowledge_num
|
||||||
|
memory_probs_safe = memory_probs + 1e-10
|
||||||
|
kl_loss = F.kl_div(
|
||||||
|
torch.log(memory_probs_safe),
|
||||||
|
torch.full_like(memory_probs, uniform_prob),
|
||||||
|
reduction='sum'
|
||||||
|
)
|
||||||
|
|
||||||
|
# 计算基尼系数损失
|
||||||
|
sorted_probs, _ = torch.sort(memory_probs)
|
||||||
|
n = self.config.knowledge_num
|
||||||
|
index = torch.arange(1, n + 1, device=device, dtype=torch.float)
|
||||||
|
gini_coeff = (2 * torch.sum(index * sorted_probs) / (n * torch.sum(sorted_probs))) - (n + 1) / n
|
||||||
|
gini_loss = gini_coeff
|
||||||
|
|
||||||
|
# 组合平衡损失
|
||||||
|
balance_loss = 0.5 * kl_loss + 0.5 * gini_loss
|
||||||
|
|
||||||
|
# 计算统计信息
|
||||||
|
with torch.no_grad():
|
||||||
|
coverage_rate = (memory_counts > 0.01).float().mean().item() # 被选中概率>1%的记忆比例
|
||||||
|
top10_threshold = torch.quantile(memory_counts, 0.9)
|
||||||
|
hot_memories = (memory_counts >= top10_threshold).sum().item()
|
||||||
|
dead_memories = (memory_counts < 0.01).sum().item() # 几乎从未被选中的记忆
|
||||||
|
selection_variance = memory_counts.var().item()
|
||||||
|
|
||||||
|
stats = {
|
||||||
|
'gini_coefficient': gini_coeff.item(),
|
||||||
|
'kl_divergence': kl_loss.item(),
|
||||||
|
'coverage_rate': coverage_rate,
|
||||||
|
'hot_memories': hot_memories,
|
||||||
|
'dead_memories': dead_memories,
|
||||||
|
'selection_variance': selection_variance,
|
||||||
|
'max_selections': memory_counts.max().item(),
|
||||||
|
'min_selections': memory_counts.min().item(),
|
||||||
|
}
|
||||||
|
|
||||||
|
return balance_loss, stats
|
||||||
|
|
||||||
|
|
||||||
class MiniMindLM(PreTrainedModel):
|
class MiniMindLM(PreTrainedModel):
|
||||||
@ -474,10 +622,12 @@ class MiniMindLM(PreTrainedModel):
|
|||||||
# 固定冻结前面的条目
|
# 固定冻结前面的条目
|
||||||
freeze_mask[:freeze_num] = True
|
freeze_mask[:freeze_num] = True
|
||||||
self.register_buffer('freeze_mask', freeze_mask, persistent=False)
|
self.register_buffer('freeze_mask', freeze_mask, persistent=False)
|
||||||
print(f"🔥 Memory bank freezing enabled: {freeze_num}/{params.knowledge_num} entries ({params.freeze_ratio*100:.1f}%) frozen")
|
print(f"🔥 Memory bank freezing enabled: {freeze_num}/{params.knowledge_num} entries ({params.freeze_ratio*100:.1f}%) frozen", flush=True)
|
||||||
|
import sys; sys.stdout.flush()
|
||||||
else:
|
else:
|
||||||
self.register_buffer('freeze_mask', torch.zeros(params.knowledge_num, dtype=torch.bool), persistent=False)
|
self.register_buffer('freeze_mask', torch.zeros(params.knowledge_num, dtype=torch.bool), persistent=False)
|
||||||
print(f"🔥 Memory bank freezing disabled: all entries can be updated")
|
print(f"🔥 Memory bank freezing disabled: all entries can be updated", flush=True)
|
||||||
|
import sys; sys.stdout.flush()
|
||||||
|
|
||||||
self.OUT = CausalLMOutputWithPast()
|
self.OUT = CausalLMOutputWithPast()
|
||||||
|
|
||||||
@ -539,20 +689,26 @@ class MiniMindLM(PreTrainedModel):
|
|||||||
h = self.dropout(self.tok_embeddings(input_ids))
|
h = self.dropout(self.tok_embeddings(input_ids))
|
||||||
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
|
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
|
||||||
|
|
||||||
# 收集所有层的平衡损失和统计信息
|
# 收集所有层的损失和统计信息 - 实验1.4.9: 四损失系统
|
||||||
total_balance_loss = 0
|
total_balance_loss = 0
|
||||||
|
total_similarity_loss = 0
|
||||||
|
total_diversity_loss = 0
|
||||||
all_layer_stats = {}
|
all_layer_stats = {}
|
||||||
all_ema_stats = {}
|
all_ema_stats = {}
|
||||||
all_cosine_stats = {}
|
all_cosine_stats = {}
|
||||||
|
|
||||||
for layer_idx, layer in enumerate(self.layers):
|
for layer_idx, layer in enumerate(self.layers):
|
||||||
if collect_ema_stats:
|
if collect_ema_stats:
|
||||||
h, balance_loss, layer_stats, ema_stats, cosine_stats = layer(h, pos_cis, self.memory_bank, self.tok_embeddings, collect_ema_stats=True)
|
h, balance_loss, similarity_loss, diversity_loss, layer_stats, ema_stats, cosine_stats = layer(h, pos_cis, self.memory_bank, self.tok_embeddings, collect_ema_stats=True)
|
||||||
all_ema_stats[f'layer_{layer_idx}'] = ema_stats
|
all_ema_stats[f'layer_{layer_idx}'] = ema_stats
|
||||||
else:
|
else:
|
||||||
h, balance_loss, layer_stats, cosine_stats = layer(h, pos_cis, self.memory_bank, self.tok_embeddings, collect_ema_stats=False)
|
h, balance_loss, similarity_loss, diversity_loss, layer_stats, cosine_stats = layer(h, pos_cis, self.memory_bank, self.tok_embeddings, collect_ema_stats=False)
|
||||||
|
|
||||||
|
# 累加四种损失
|
||||||
total_balance_loss += balance_loss
|
total_balance_loss += balance_loss
|
||||||
|
total_similarity_loss += similarity_loss
|
||||||
|
total_diversity_loss += diversity_loss
|
||||||
|
|
||||||
# 为每层的统计信息添加前缀
|
# 为每层的统计信息添加前缀
|
||||||
for key, value in layer_stats.items():
|
for key, value in layer_stats.items():
|
||||||
all_layer_stats[f'layer_{layer_idx}_{key}'] = value
|
all_layer_stats[f'layer_{layer_idx}_{key}'] = value
|
||||||
@ -563,8 +719,12 @@ class MiniMindLM(PreTrainedModel):
|
|||||||
|
|
||||||
logits = self.output(self.norm(h))
|
logits = self.output(self.norm(h))
|
||||||
|
|
||||||
# 使用总的平衡损失作为aux_loss
|
# 🔥 新的四损失结构
|
||||||
aux_loss = total_balance_loss
|
aux_loss = {
|
||||||
|
'balance_loss': total_balance_loss,
|
||||||
|
'similarity_loss': total_similarity_loss,
|
||||||
|
'diversity_loss': total_diversity_loss,
|
||||||
|
}
|
||||||
|
|
||||||
self.OUT.__setitem__('last_hidden_state', h)
|
self.OUT.__setitem__('last_hidden_state', h)
|
||||||
self.OUT.__setitem__('logits', logits)
|
self.OUT.__setitem__('logits', logits)
|
||||||
|
|||||||
770
model/model_memory_1_4_9.py
Normal file
770
model/model_memory_1_4_9.py
Normal file
@ -0,0 +1,770 @@
|
|||||||
|
import math
|
||||||
|
import struct
|
||||||
|
import inspect
|
||||||
|
import time
|
||||||
|
|
||||||
|
from .LMConfig import LMConfig
|
||||||
|
from typing import Any, Optional, Tuple, List, Union
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from torch import nn
|
||||||
|
from transformers import PreTrainedModel
|
||||||
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||||
|
|
||||||
|
|
||||||
|
class RMSNorm(torch.nn.Module):
|
||||||
|
def __init__(self, dim: int, eps: float = 1e-6):
|
||||||
|
super().__init__()
|
||||||
|
self.eps = eps
|
||||||
|
self.weight = nn.Parameter(torch.ones(dim))
|
||||||
|
|
||||||
|
def _norm(self, x):
|
||||||
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.weight * self._norm(x.float()).type_as(x)
|
||||||
|
|
||||||
|
|
||||||
|
def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
||||||
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
||||||
|
t = torch.arange(end, device=freqs.device) # type: ignore
|
||||||
|
freqs = torch.outer(t, freqs).float() # type: ignore
|
||||||
|
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
||||||
|
return pos_cis
|
||||||
|
|
||||||
|
|
||||||
|
def apply_rotary_emb(xq, xk, pos_cis):
|
||||||
|
def unite_shape(pos_cis, x):
|
||||||
|
ndim = x.ndim
|
||||||
|
assert 0 <= 1 < ndim
|
||||||
|
assert pos_cis.shape == (x.shape[1], x.shape[-1])
|
||||||
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
|
||||||
|
return pos_cis.view(*shape)
|
||||||
|
|
||||||
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
|
||||||
|
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
|
||||||
|
pos_cis = unite_shape(pos_cis, xq_)
|
||||||
|
xq_out = torch.view_as_real(xq_ * pos_cis).flatten(3)
|
||||||
|
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
|
||||||
|
return xq_out.type_as(xq), xk_out.type_as(xk)
|
||||||
|
|
||||||
|
|
||||||
|
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||||
|
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
||||||
|
bs, slen, n_kv_heads, head_dim = x.shape
|
||||||
|
if n_rep == 1:
|
||||||
|
return x
|
||||||
|
return (
|
||||||
|
x[:, :, :, None, :]
|
||||||
|
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
|
||||||
|
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
class Attention(nn.Module):
|
||||||
|
"""Self attention module without KV cache"""
|
||||||
|
def __init__(self, args: LMConfig):
|
||||||
|
super().__init__()
|
||||||
|
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
||||||
|
assert args.n_heads % self.n_kv_heads == 0
|
||||||
|
self.n_local_heads = args.n_heads
|
||||||
|
self.n_local_kv_heads = self.n_kv_heads
|
||||||
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
||||||
|
self.head_dim = args.dim // args.n_heads
|
||||||
|
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
|
||||||
|
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
||||||
|
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
||||||
|
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
|
||||||
|
self.attn_dropout = nn.Dropout(args.dropout)
|
||||||
|
self.resid_dropout = nn.Dropout(args.dropout)
|
||||||
|
self.dropout = args.dropout
|
||||||
|
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
|
||||||
|
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
||||||
|
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
|
||||||
|
mask = torch.triu(mask, diagonal=1)
|
||||||
|
self.register_buffer("mask", mask, persistent=False)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor, pos_cis: torch.Tensor):
|
||||||
|
"""Forward pass without KV cache"""
|
||||||
|
bsz, seq_len, _ = x.shape
|
||||||
|
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
||||||
|
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
|
||||||
|
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
||||||
|
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
||||||
|
|
||||||
|
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
|
||||||
|
|
||||||
|
# 注意:完全去除了KV cache相关代码
|
||||||
|
|
||||||
|
xq, xk, xv = (
|
||||||
|
xq.transpose(1, 2),
|
||||||
|
repeat_kv(xk, self.n_rep).transpose(1, 2),
|
||||||
|
repeat_kv(xv, self.n_rep).transpose(1, 2)
|
||||||
|
)
|
||||||
|
if self.flash and seq_len != 1:
|
||||||
|
dropout_p = self.dropout if self.training else 0.0
|
||||||
|
output = F.scaled_dot_product_attention(
|
||||||
|
xq, xk, xv,
|
||||||
|
attn_mask=None,
|
||||||
|
dropout_p=dropout_p,
|
||||||
|
is_causal=True
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
||||||
|
scores += self.mask[:, :, :seq_len, :seq_len]
|
||||||
|
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
||||||
|
scores = self.attn_dropout(scores)
|
||||||
|
output = scores @ xv
|
||||||
|
|
||||||
|
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
|
||||||
|
output = self.resid_dropout(self.wo(output))
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class MemoryGate(nn.Module):
|
||||||
|
"""Product Key Memory-based gate mechanism for memory selection"""
|
||||||
|
def __init__(self, config: LMConfig):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
self.dim = config.dim
|
||||||
|
self.knowledge_num = config.knowledge_num
|
||||||
|
self.knowledge_dim = config.knowledge_dim
|
||||||
|
self.num_selected = getattr(config, 'num_selected', 16)
|
||||||
|
|
||||||
|
# 确保知识库数量是完全平方数
|
||||||
|
assert int(self.knowledge_num ** 0.5) ** 2 == self.knowledge_num, \
|
||||||
|
f"knowledge_num ({self.knowledge_num}) must be a perfect square for product key memory"
|
||||||
|
|
||||||
|
self.num_keys = int(self.knowledge_num ** 0.5)
|
||||||
|
|
||||||
|
# 查询投影:将输入维度映射到knowledge_dim * 2(用于两个product key)
|
||||||
|
self.gate_proj = nn.Linear(self.dim, self.knowledge_dim, bias=False)
|
||||||
|
|
||||||
|
# Product Key Memory: 两个独立的键集合
|
||||||
|
self.keys = nn.Parameter(torch.randn(2, self.num_keys, self.knowledge_dim // 2))
|
||||||
|
|
||||||
|
self.dropout = nn.Dropout(config.dropout)
|
||||||
|
|
||||||
|
def forward(self, x: torch.Tensor):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x: [batch_size, seq_len, dim]
|
||||||
|
Returns:
|
||||||
|
memory_indices: [batch_size, seq_len, num_selected]
|
||||||
|
memory_scores: [batch_size, seq_len, num_selected]
|
||||||
|
balance_loss: 平衡损失(KL散度 + 基尼系数)
|
||||||
|
stats: 监控统计信息字典
|
||||||
|
"""
|
||||||
|
bsz, seq_len, _ = x.shape
|
||||||
|
|
||||||
|
# 生成查询向量
|
||||||
|
queries = self.gate_proj(x) # [batch, seq_len, knowledge_dim]
|
||||||
|
|
||||||
|
# 分割为两部分用于product key
|
||||||
|
q1 = queries[:, :, :self.knowledge_dim // 2] # [batch, seq_len, knowledge_dim // 2]
|
||||||
|
q2 = queries[:, :, self.knowledge_dim // 2:] # [batch, seq_len, knowledge_dim // 2]
|
||||||
|
|
||||||
|
# 计算与两个键集合的相似度
|
||||||
|
scores_1 = torch.einsum('bsd,kd->bsk', q1, self.keys[0]) # [batch, seq_len, num_keys]
|
||||||
|
scores_2 = torch.einsum('bsd,kd->bsk', q2, self.keys[1]) # [batch, seq_len, num_keys]
|
||||||
|
|
||||||
|
# 获取top-k
|
||||||
|
topk_scores_1, topk_indices_1 = scores_1.topk(self.num_selected, dim=-1)
|
||||||
|
topk_scores_2, topk_indices_2 = scores_2.topk(self.num_selected, dim=-1)
|
||||||
|
|
||||||
|
# 组合product key的结果
|
||||||
|
combined_scores = topk_scores_1.unsqueeze(-1) + topk_scores_2.unsqueeze(-2) # [batch, seq_len, num_selected, num_selected]
|
||||||
|
combined_indices = topk_indices_1.unsqueeze(-1) * self.num_keys + topk_indices_2.unsqueeze(-2) # [batch, seq_len, num_selected, num_selected]
|
||||||
|
|
||||||
|
# 展平并选择最终的top-k
|
||||||
|
combined_scores = combined_scores.view(bsz, seq_len, -1)
|
||||||
|
combined_indices = combined_indices.view(bsz, seq_len, -1)
|
||||||
|
|
||||||
|
final_scores, final_pk_indices = combined_scores.topk(self.num_selected, dim=-1)
|
||||||
|
memory_indices = combined_indices.gather(-1, final_pk_indices)
|
||||||
|
|
||||||
|
# 归一化分数
|
||||||
|
memory_scores = F.softmax(final_scores, dim=-1)
|
||||||
|
memory_scores = self.dropout(memory_scores)
|
||||||
|
|
||||||
|
# 计算平衡损失和监控统计
|
||||||
|
balance_loss, stats = self._compute_balance_loss_and_stats(memory_indices, memory_scores)
|
||||||
|
|
||||||
|
return memory_indices, memory_scores, balance_loss, stats
|
||||||
|
|
||||||
|
def _compute_balance_loss_and_stats(self, memory_indices, memory_scores):
|
||||||
|
"""
|
||||||
|
计算平衡损失和监控统计信息
|
||||||
|
|
||||||
|
Args:
|
||||||
|
memory_indices: [batch_size, seq_len, num_selected]
|
||||||
|
memory_scores: [batch_size, seq_len, num_selected]
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
balance_loss: 标量张量
|
||||||
|
stats: 统计信息字典
|
||||||
|
"""
|
||||||
|
bsz, seq_len, num_selected = memory_indices.shape
|
||||||
|
device = memory_indices.device
|
||||||
|
|
||||||
|
# 1. 计算记忆选择分布
|
||||||
|
# 将所有选择的记忆索引展平
|
||||||
|
flat_indices = memory_indices.view(-1) # [batch_size * seq_len * num_selected]
|
||||||
|
|
||||||
|
# 统计每个记忆条目被选中的次数
|
||||||
|
memory_counts = torch.zeros(self.knowledge_num, device=device)
|
||||||
|
memory_counts.scatter_add_(0, flat_indices, torch.ones_like(flat_indices, dtype=torch.float))
|
||||||
|
|
||||||
|
# 计算选择概率分布
|
||||||
|
total_selections = bsz * seq_len * num_selected
|
||||||
|
memory_probs = memory_counts / total_selections
|
||||||
|
|
||||||
|
# 2. 计算KL散度损失(与均匀分布的KL散度)
|
||||||
|
uniform_prob = 1.0 / self.knowledge_num
|
||||||
|
# 避免log(0)的问题
|
||||||
|
memory_probs_safe = memory_probs + 1e-10
|
||||||
|
kl_loss = F.kl_div(
|
||||||
|
torch.log(memory_probs_safe),
|
||||||
|
torch.full_like(memory_probs, uniform_prob),
|
||||||
|
reduction='sum'
|
||||||
|
)
|
||||||
|
|
||||||
|
# 3. 计算基尼系数损失(衡量分布不平等程度)
|
||||||
|
sorted_probs, _ = torch.sort(memory_probs)
|
||||||
|
n = self.knowledge_num
|
||||||
|
index = torch.arange(1, n + 1, device=device, dtype=torch.float)
|
||||||
|
gini_coeff = (2 * torch.sum(index * sorted_probs) / (n * torch.sum(sorted_probs))) - (n + 1) / n
|
||||||
|
gini_loss = gini_coeff # 基尼系数越大,分布越不均匀
|
||||||
|
|
||||||
|
# 4. 组合平衡损失
|
||||||
|
balance_loss = 0.5 * kl_loss + 0.5 * gini_loss
|
||||||
|
|
||||||
|
# 5. 计算监控统计信息
|
||||||
|
with torch.no_grad():
|
||||||
|
# 记忆覆盖率:被选中的记忆条目占总数的比例
|
||||||
|
coverage_rate = (memory_counts > 0).float().mean().item()
|
||||||
|
|
||||||
|
# 热点记忆:选择次数前10%的记忆条目
|
||||||
|
top10_threshold = torch.quantile(memory_counts, 0.9)
|
||||||
|
hot_memories = (memory_counts >= top10_threshold).sum().item()
|
||||||
|
|
||||||
|
# 死记忆:从未被选中的记忆条目
|
||||||
|
dead_memories = (memory_counts == 0).sum().item()
|
||||||
|
|
||||||
|
# 记忆选择方差(衡量不平衡程度)
|
||||||
|
selection_variance = memory_counts.var().item()
|
||||||
|
|
||||||
|
stats = {
|
||||||
|
'gini_coefficient': gini_coeff.item(),
|
||||||
|
'kl_divergence': kl_loss.item(),
|
||||||
|
'coverage_rate': coverage_rate,
|
||||||
|
'hot_memories': hot_memories,
|
||||||
|
'dead_memories': dead_memories,
|
||||||
|
'selection_variance': selection_variance,
|
||||||
|
'max_selections': memory_counts.max().item(),
|
||||||
|
'min_selections': memory_counts.min().item(),
|
||||||
|
}
|
||||||
|
|
||||||
|
return balance_loss, stats
|
||||||
|
|
||||||
|
|
||||||
|
class GatedMemoryFusion(nn.Module):
|
||||||
|
"""Gated MLP fusion for concatenated h_attn and selected memories"""
|
||||||
|
def __init__(self, config: LMConfig):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config
|
||||||
|
self.dim = config.dim
|
||||||
|
self.knowledge_dim = config.knowledge_dim
|
||||||
|
self.num_selected = getattr(config, 'num_selected', 16)
|
||||||
|
|
||||||
|
# 输入维度:dim (h_attn) + num_selected * knowledge_dim (选中的记忆)
|
||||||
|
# 实验1.4.6:记忆解码后立即压缩回knowledge_dim避免显存爆炸
|
||||||
|
concat_dim = self.dim + self.num_selected * self.dim
|
||||||
|
|
||||||
|
# 类似SwiGLU的门控MLP结构
|
||||||
|
self.gate_proj = nn.Linear(concat_dim, self.dim, bias=False)
|
||||||
|
self.up_proj = nn.Linear(concat_dim, self.dim, bias=False)
|
||||||
|
self.down_proj = nn.Linear(self.dim, self.dim, bias=False)
|
||||||
|
|
||||||
|
self.dropout = nn.Dropout(config.dropout)
|
||||||
|
|
||||||
|
def forward(self, h_attn: torch.Tensor, selected_memories: torch.Tensor, memory_scores: torch.Tensor):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
h_attn: [batch_size, seq_len, dim] - Self attention output
|
||||||
|
selected_memories: [batch_size, seq_len, num_selected, knowledge_dim] - Selected memory data
|
||||||
|
memory_scores: [batch_size, seq_len, num_selected] - Memory selection weights (not used in concatenation approach)
|
||||||
|
Returns:
|
||||||
|
output: [batch_size, seq_len, dim]
|
||||||
|
"""
|
||||||
|
bsz, seq_len, _ = h_attn.shape
|
||||||
|
|
||||||
|
# 将选中的记忆展平为一维向量
|
||||||
|
# [batch, seq_len, num_selected, knowledge_dim] -> [batch, seq_len, num_selected * knowledge_dim]
|
||||||
|
memory_flat = selected_memories.reshape(bsz, seq_len, -1)
|
||||||
|
|
||||||
|
# 拼接h_attn和记忆信息
|
||||||
|
concat_input = torch.cat([h_attn, memory_flat], dim=-1) # [batch, seq_len, dim + num_selected * dim]
|
||||||
|
|
||||||
|
# 门控MLP处理(类似SwiGLU)
|
||||||
|
gate = F.silu(self.gate_proj(concat_input)) # [batch, seq_len, dim]
|
||||||
|
up = self.up_proj(concat_input) # [batch, seq_len, dim]
|
||||||
|
fusion_output = gate * up # Element-wise multiplication
|
||||||
|
|
||||||
|
# 输出投影
|
||||||
|
output = self.down_proj(fusion_output) # [batch, seq_len, dim]
|
||||||
|
output = self.dropout(output)
|
||||||
|
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
|
class MiniMindBlock(nn.Module):
|
||||||
|
"""Transformer block with memory-based cross attention instead of FFN"""
|
||||||
|
def __init__(self, layer_id: int, config: LMConfig):
|
||||||
|
super().__init__()
|
||||||
|
self.config = config # 保存config引用
|
||||||
|
self.n_heads = config.n_heads
|
||||||
|
self.dim = config.dim
|
||||||
|
self.head_dim = config.dim // config.n_heads
|
||||||
|
self.attention = Attention(config)
|
||||||
|
|
||||||
|
self.layer_id = layer_id
|
||||||
|
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
||||||
|
self.memory_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
||||||
|
|
||||||
|
# 记忆相关模块
|
||||||
|
self.memory_gate = MemoryGate(config)
|
||||||
|
self.gated_memory_fusion = GatedMemoryFusion(config)
|
||||||
|
|
||||||
|
# self.attentionpool = nn.Linear(config.dim, 1)
|
||||||
|
|
||||||
|
def forward(self, x, pos_cis, memory_bank, tok_embeddings, collect_ema_stats=False):
|
||||||
|
"""
|
||||||
|
Args:
|
||||||
|
x: [batch_size, seq_len, dim]
|
||||||
|
pos_cis: positional encoding
|
||||||
|
memory_bank: [knowledge_num, knowledge_dim] - shared memory bank
|
||||||
|
collect_ema_stats: 是否收集EMA更新统计信息
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
out: [batch_size, seq_len, dim]
|
||||||
|
balance_loss: 该层的平衡损失
|
||||||
|
layer_stats: 该层的监控统计信息
|
||||||
|
ema_stats: EMA更新统计信息(如果collect_ema_stats=True)
|
||||||
|
cosine_stats: 查找向量与选中记忆条目的余弦相似度统计信息
|
||||||
|
"""
|
||||||
|
# Self attention
|
||||||
|
h_attn = self.attention(self.attention_norm(x), pos_cis)
|
||||||
|
h = x + h_attn
|
||||||
|
|
||||||
|
# 使用h_attn作为门控和交叉注意力的输入(核心:self attention的输出)
|
||||||
|
h_for_memory = self.memory_norm(h_attn)
|
||||||
|
|
||||||
|
# 门控选择记忆
|
||||||
|
memory_indices, memory_scores, balance_loss, layer_stats = self.memory_gate(h_for_memory)
|
||||||
|
|
||||||
|
# 根据索引获取记忆数据 - 实验1.4.6:解码token_id为特征向量
|
||||||
|
bsz, seq_len, num_selected = memory_indices.shape
|
||||||
|
memory_indices_flat = memory_indices.view(-1)
|
||||||
|
selected_token_ids = memory_bank[memory_indices_flat] # [batch * seq_len * num_selected, knowledge_length]
|
||||||
|
|
||||||
|
# 解码token_ids为特征向量并立即压缩避免显存爆炸
|
||||||
|
selected_embeddings = tok_embeddings(selected_token_ids) # [batch * seq_len * num_selected, knowledge_length, dim]
|
||||||
|
|
||||||
|
# 立即压缩:knowledge_length * dim -> knowledge_dim 避免显存爆炸
|
||||||
|
# 使用平均池化压缩knowledge_length维度
|
||||||
|
pooled_memory = selected_embeddings.mean(dim=1) # [batch * seq_len * num_selected, dim]
|
||||||
|
# attn_weights = self.attentionpool(selected_embeddings)
|
||||||
|
# attn_weights = torch.softmax(attn_weights, dim=1)
|
||||||
|
# pooled_memory = torch.sum(selected_embeddings * attn_weights, dim=1)
|
||||||
|
|
||||||
|
selected_memory = pooled_memory.view(bsz, seq_len, num_selected, self.dim) # [batch, seq_len, num_selected, dim]
|
||||||
|
|
||||||
|
# 门控MLP融合:串型连接h_attn和选中的记忆
|
||||||
|
memory_output = self.gated_memory_fusion(h_for_memory, selected_memory, memory_scores)
|
||||||
|
|
||||||
|
# 残差连接
|
||||||
|
out = h + memory_output
|
||||||
|
|
||||||
|
# 🔍 新增: 计算查找向量与选中记忆条目的余弦相似度
|
||||||
|
with torch.no_grad():
|
||||||
|
|
||||||
|
# 扩展查找向量维度以匹配selected_memory
|
||||||
|
h_expanded = h_for_memory.unsqueeze(2).expand(-1, -1, num_selected, -1) # [batch, seq_len, num_selected, dim]
|
||||||
|
|
||||||
|
# 计算余弦相似度:cosine_sim(query, memory) for each selected memory
|
||||||
|
cosine_similarities = F.cosine_similarity(
|
||||||
|
h_expanded, # [batch, seq_len, num_selected, dim]
|
||||||
|
selected_memory, # [batch, seq_len, num_selected, knowledge_dim]
|
||||||
|
dim=-1 # 在knowledge_dim维度计算余弦相似度
|
||||||
|
) # [batch, seq_len, num_selected]
|
||||||
|
|
||||||
|
# 计算余弦相似度统计信息
|
||||||
|
cosine_stats = {
|
||||||
|
'cosine_similarities': cosine_similarities, # [batch, seq_len, num_selected]
|
||||||
|
'avg_cosine_similarity': cosine_similarities.mean().item(), # 平均余弦相似度
|
||||||
|
'max_cosine_similarity': cosine_similarities.max().item(), # 最大余弦相似度
|
||||||
|
'min_cosine_similarity': cosine_similarities.min().item(), # 最小余弦相似度
|
||||||
|
'std_cosine_similarity': cosine_similarities.std().item(), # 余弦相似度标准差
|
||||||
|
}
|
||||||
|
|
||||||
|
# 收集EMA更新统计信息(仅在训练时且启用时)
|
||||||
|
ema_stats = None
|
||||||
|
if collect_ema_stats and self.training:
|
||||||
|
ema_stats = {
|
||||||
|
'memory_indices': memory_indices, # [batch, seq_len, num_selected]
|
||||||
|
'memory_scores': memory_scores, # [batch, seq_len, num_selected]
|
||||||
|
'h_for_memory': h_for_memory, # [batch, seq_len, dim]
|
||||||
|
'selected_memory': selected_memory, # [batch, seq_len, num_selected, knowledge_dim]
|
||||||
|
}
|
||||||
|
|
||||||
|
if collect_ema_stats:
|
||||||
|
return out, balance_loss, layer_stats, ema_stats, cosine_stats
|
||||||
|
else:
|
||||||
|
return out, balance_loss, layer_stats, cosine_stats
|
||||||
|
|
||||||
|
|
||||||
|
class MiniMindLM(PreTrainedModel):
|
||||||
|
config_class = LMConfig
|
||||||
|
|
||||||
|
def __init__(self, params: LMConfig = None):
|
||||||
|
self.params = params or LMConfig()
|
||||||
|
super().__init__(self.params)
|
||||||
|
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
|
||||||
|
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
|
||||||
|
self.dropout = nn.Dropout(params.dropout)
|
||||||
|
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
|
||||||
|
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
||||||
|
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
|
||||||
|
self.tok_embeddings.weight = self.output.weight
|
||||||
|
self.register_buffer("pos_cis",
|
||||||
|
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta),
|
||||||
|
persistent=False)
|
||||||
|
|
||||||
|
# 初始化共享记忆库 - 实验1.4.6:存储token_id而非特征向量
|
||||||
|
# VQ-VAE风格:memory_bank作为codebook,使用EMA更新而非梯度更新
|
||||||
|
if params.use_ema_update:
|
||||||
|
self.memory_bank = nn.Parameter(
|
||||||
|
torch.randint(0, params.vocab_size, (params.knowledge_num, params.knowledge_length)),
|
||||||
|
requires_grad=False # 禁用梯度更新,使用EMA更新
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.memory_bank = nn.Parameter(
|
||||||
|
torch.randint(0, params.vocab_size, (params.knowledge_num, params.knowledge_length)),
|
||||||
|
requires_grad=True # 传统梯度更新
|
||||||
|
)
|
||||||
|
|
||||||
|
# EMA更新相关缓冲区
|
||||||
|
if params.use_ema_update:
|
||||||
|
# 记录每个memory条目的更新统计
|
||||||
|
self.register_buffer('ema_update_count', torch.zeros(params.knowledge_num), persistent=False)
|
||||||
|
# 注意:现在memory_bank存储token_id,但EMA在特征空间进行,所以不需要sum_buffer了
|
||||||
|
# self.register_buffer('ema_sum_buffer', torch.zeros_like(self.memory_bank), persistent=False)
|
||||||
|
# EMA更新频率计数器
|
||||||
|
self.register_buffer('ema_step_counter', torch.zeros(1, dtype=torch.long), persistent=False)
|
||||||
|
|
||||||
|
# 记录上一步的记忆库状态,用于计算更新统计
|
||||||
|
self.register_buffer('prev_memory_bank', torch.zeros_like(self.memory_bank), persistent=False)
|
||||||
|
|
||||||
|
# 🔥 新增: 冻结mask - 标记哪些memory_bank条目被冻结(不更新)
|
||||||
|
if params.freeze_ratio > 0.0:
|
||||||
|
freeze_num = int(params.knowledge_num * params.freeze_ratio)
|
||||||
|
freeze_mask = torch.zeros(params.knowledge_num, dtype=torch.bool)
|
||||||
|
# 固定冻结前面的条目
|
||||||
|
freeze_mask[:freeze_num] = True
|
||||||
|
self.register_buffer('freeze_mask', freeze_mask, persistent=False)
|
||||||
|
print(f"🔥 Memory bank freezing enabled: {freeze_num}/{params.knowledge_num} entries ({params.freeze_ratio*100:.1f}%) frozen")
|
||||||
|
else:
|
||||||
|
self.register_buffer('freeze_mask', torch.zeros(params.knowledge_num, dtype=torch.bool), persistent=False)
|
||||||
|
print(f"🔥 Memory bank freezing disabled: all entries can be updated")
|
||||||
|
|
||||||
|
self.OUT = CausalLMOutputWithPast()
|
||||||
|
|
||||||
|
def get_memory_update_stats(self):
|
||||||
|
"""
|
||||||
|
计算记忆库更新统计信息
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
update_stats: 包含更新统计的字典
|
||||||
|
"""
|
||||||
|
with torch.no_grad():
|
||||||
|
if hasattr(self, 'prev_memory_bank') and self.prev_memory_bank.numel() > 0:
|
||||||
|
# 计算L2距离变化
|
||||||
|
l2_distance = torch.norm(self.memory_bank - self.prev_memory_bank, p=2, dim=-1)
|
||||||
|
avg_l2_distance = l2_distance.mean().item()
|
||||||
|
max_l2_distance = l2_distance.max().item()
|
||||||
|
|
||||||
|
# 计算余弦相似度
|
||||||
|
cos_sim = F.cosine_similarity(
|
||||||
|
self.memory_bank.view(-1),
|
||||||
|
self.prev_memory_bank.view(-1),
|
||||||
|
dim=0
|
||||||
|
).item()
|
||||||
|
|
||||||
|
# 计算更新率(发生显著变化的记忆条目比例)
|
||||||
|
threshold = 0.01 # 更新阈值
|
||||||
|
updated_memories = (l2_distance > threshold).sum().item()
|
||||||
|
update_rate = updated_memories / self.memory_bank.size(0)
|
||||||
|
|
||||||
|
update_stats = {
|
||||||
|
'memory_avg_l2_change': avg_l2_distance,
|
||||||
|
'memory_max_l2_change': max_l2_distance,
|
||||||
|
'memory_cosine_similarity': cos_sim,
|
||||||
|
'memory_update_rate': update_rate,
|
||||||
|
'memory_updated_count': updated_memories
|
||||||
|
}
|
||||||
|
else:
|
||||||
|
# 第一次调用时的默认值
|
||||||
|
update_stats = {
|
||||||
|
'memory_avg_l2_change': 0.0,
|
||||||
|
'memory_max_l2_change': 0.0,
|
||||||
|
'memory_cosine_similarity': 1.0,
|
||||||
|
'memory_update_rate': 0.0,
|
||||||
|
'memory_updated_count': 0
|
||||||
|
}
|
||||||
|
|
||||||
|
# 更新prev_memory_bank
|
||||||
|
self.prev_memory_bank.copy_(self.memory_bank)
|
||||||
|
|
||||||
|
return update_stats
|
||||||
|
|
||||||
|
def forward(self,
|
||||||
|
input_ids: Optional[torch.Tensor] = None,
|
||||||
|
**args):
|
||||||
|
"""Forward pass without KV cache support"""
|
||||||
|
start_pos = args.get('start_pos', 0)
|
||||||
|
collect_ema_stats = args.get('collect_ema_stats', self.params.use_ema_update and self.training)
|
||||||
|
|
||||||
|
h = self.dropout(self.tok_embeddings(input_ids))
|
||||||
|
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
|
||||||
|
|
||||||
|
# 收集所有层的平衡损失和统计信息
|
||||||
|
total_balance_loss = 0
|
||||||
|
all_layer_stats = {}
|
||||||
|
all_ema_stats = {}
|
||||||
|
all_cosine_stats = {}
|
||||||
|
|
||||||
|
for layer_idx, layer in enumerate(self.layers):
|
||||||
|
if collect_ema_stats:
|
||||||
|
h, balance_loss, layer_stats, ema_stats, cosine_stats = layer(h, pos_cis, self.memory_bank, self.tok_embeddings, collect_ema_stats=True)
|
||||||
|
all_ema_stats[f'layer_{layer_idx}'] = ema_stats
|
||||||
|
else:
|
||||||
|
h, balance_loss, layer_stats, cosine_stats = layer(h, pos_cis, self.memory_bank, self.tok_embeddings, collect_ema_stats=False)
|
||||||
|
|
||||||
|
total_balance_loss += balance_loss
|
||||||
|
# 为每层的统计信息添加前缀
|
||||||
|
for key, value in layer_stats.items():
|
||||||
|
all_layer_stats[f'layer_{layer_idx}_{key}'] = value
|
||||||
|
|
||||||
|
# 为每层的余弦相似度统计信息添加前缀
|
||||||
|
for key, value in cosine_stats.items():
|
||||||
|
all_cosine_stats[f'layer_{layer_idx}_{key}'] = value
|
||||||
|
|
||||||
|
logits = self.output(self.norm(h))
|
||||||
|
|
||||||
|
# 使用总的平衡损失作为aux_loss
|
||||||
|
aux_loss = total_balance_loss
|
||||||
|
|
||||||
|
self.OUT.__setitem__('last_hidden_state', h)
|
||||||
|
self.OUT.__setitem__('logits', logits)
|
||||||
|
self.OUT.__setitem__('aux_loss', aux_loss)
|
||||||
|
self.OUT.__setitem__('layer_stats', all_layer_stats) # 添加层级统计信息
|
||||||
|
self.OUT.__setitem__('ema_stats', all_ema_stats if collect_ema_stats else None) # 添加EMA统计信息
|
||||||
|
self.OUT.__setitem__('cosine_stats', all_cosine_stats) # 添加余弦相似度统计信息
|
||||||
|
self.OUT.__setitem__('past_key_values', None) # 不支持KV cache
|
||||||
|
return self.OUT
|
||||||
|
|
||||||
|
@torch.inference_mode()
|
||||||
|
def generate(self, input_ids, eos_token_id=2, max_new_tokens=1024, temperature=0.75, top_p=0.90,
|
||||||
|
stream=False, rp=1., pad_token_id=0, num_return_sequences=1, **args):
|
||||||
|
"""Generate without KV cache"""
|
||||||
|
# 流式生成
|
||||||
|
if stream:
|
||||||
|
return self._stream(input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, **args)
|
||||||
|
|
||||||
|
# 直接生成
|
||||||
|
generated = []
|
||||||
|
for i in range(input_ids.size(0)):
|
||||||
|
non_pad = input_ids[i][input_ids[i] != pad_token_id].unsqueeze(0)
|
||||||
|
for _ in range(num_return_sequences):
|
||||||
|
out = self._stream(non_pad, eos_token_id, max_new_tokens, temperature, top_p, rp, **args)
|
||||||
|
tokens_list = [tokens[:, -1:] for tokens in out]
|
||||||
|
gen = torch.cat(tokens_list, dim=-1) if tokens_list else non_pad
|
||||||
|
full_sequence = torch.cat([non_pad, gen], dim=-1)
|
||||||
|
generated.append(full_sequence)
|
||||||
|
|
||||||
|
max_length = max(seq.size(1) for seq in generated)
|
||||||
|
generated = [
|
||||||
|
torch.cat(
|
||||||
|
[seq, torch.full((1, max_length - seq.size(1)), pad_token_id, dtype=seq.dtype, device=seq.device)],
|
||||||
|
dim=-1)
|
||||||
|
for seq in generated
|
||||||
|
]
|
||||||
|
output = torch.cat(generated, dim=0)
|
||||||
|
res = output.view(input_ids.size(0) * num_return_sequences, -1)
|
||||||
|
return res
|
||||||
|
|
||||||
|
def _stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, **args):
|
||||||
|
"""Stream generation without KV cache - regenerates full sequence each time"""
|
||||||
|
start = input_ids.shape[1]
|
||||||
|
while input_ids.shape[1] < start + max_new_tokens:
|
||||||
|
# 每次都重新计算整个序列(因为没有KV cache)
|
||||||
|
out = self(input_ids, **args)
|
||||||
|
logits = out.logits[:, -1, :]
|
||||||
|
|
||||||
|
# 重复惩罚
|
||||||
|
logits[:, list(set(input_ids.tolist()[0]))] /= rp
|
||||||
|
logits /= (temperature + 1e-9)
|
||||||
|
|
||||||
|
# Top-p采样
|
||||||
|
if top_p is not None and top_p < 1.0:
|
||||||
|
sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
|
||||||
|
sorted_probs = F.softmax(sorted_logits, dim=-1)
|
||||||
|
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
||||||
|
sorted_indices_to_remove = cumulative_probs > top_p
|
||||||
|
sorted_indices_to_remove[:, 1:] = sorted_indices_to_remove[:, :-1].clone()
|
||||||
|
sorted_indices_to_remove[:, 0] = False
|
||||||
|
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
||||||
|
logits[indices_to_remove] = -float('Inf')
|
||||||
|
|
||||||
|
input_ids_next = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
|
||||||
|
input_ids = torch.cat((input_ids, input_ids_next), dim=1)
|
||||||
|
yield input_ids[:, start:]
|
||||||
|
if input_ids_next.item() == eos_token_id:
|
||||||
|
break
|
||||||
|
|
||||||
|
def apply_ema_update(self, ema_stats):
|
||||||
|
"""
|
||||||
|
应用token-based EMA更新到memory_bank
|
||||||
|
实验1.4.6:批量化tensor操作优化版本
|
||||||
|
|
||||||
|
Args:
|
||||||
|
ema_stats: 从forward pass收集的EMA统计信息,格式为:
|
||||||
|
{'layer_0': {'memory_indices': ..., 'h_for_memory': ...}, 'layer_1': ...}
|
||||||
|
"""
|
||||||
|
if not self.params.use_ema_update:
|
||||||
|
return {}
|
||||||
|
|
||||||
|
# 增加EMA步数计数器
|
||||||
|
self.ema_step_counter += 1
|
||||||
|
|
||||||
|
# 检查是否需要进行EMA更新
|
||||||
|
if self.ema_step_counter % self.params.ema_update_freq != 0:
|
||||||
|
return {'ema_update_applied': False, 'reason': 'frequency_check_failed'}
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
device = self.memory_bank.device
|
||||||
|
knowledge_num, knowledge_length = self.memory_bank.shape
|
||||||
|
dim = self.params.dim
|
||||||
|
|
||||||
|
# 🚀 批量收集所有层的数据(避免字典操作)
|
||||||
|
all_indices = []
|
||||||
|
all_features = []
|
||||||
|
total_selections = 0
|
||||||
|
total_layers = 0
|
||||||
|
|
||||||
|
# 收集所有层的EMA统计信息
|
||||||
|
for layer_ema_stats in ema_stats.values():
|
||||||
|
if layer_ema_stats is None:
|
||||||
|
continue
|
||||||
|
|
||||||
|
total_layers += 1
|
||||||
|
memory_indices = layer_ema_stats['memory_indices'] # [batch, seq_len, num_selected]
|
||||||
|
h_for_memory = layer_ema_stats['h_for_memory'] # [batch, seq_len, dim]
|
||||||
|
|
||||||
|
bsz, seq_len, num_selected = memory_indices.shape
|
||||||
|
total_selections += bsz * seq_len * num_selected
|
||||||
|
|
||||||
|
# 展平索引和对应的h_for_memory
|
||||||
|
flat_indices = memory_indices.view(-1) # [batch * seq_len * num_selected]
|
||||||
|
|
||||||
|
# 为每个选择位置复制对应的h_for_memory
|
||||||
|
h_expanded = h_for_memory.unsqueeze(2).expand(-1, -1, num_selected, -1) # [batch, seq_len, num_selected, dim]
|
||||||
|
flat_h = h_expanded.reshape(-1, dim) # [batch * seq_len * num_selected, dim]
|
||||||
|
|
||||||
|
all_indices.append(flat_indices)
|
||||||
|
all_features.append(flat_h)
|
||||||
|
|
||||||
|
if not all_indices:
|
||||||
|
return {'ema_update_applied': False, 'reason': 'no_ema_stats'}
|
||||||
|
|
||||||
|
# 🚀 合并所有数据
|
||||||
|
all_indices = torch.cat(all_indices, dim=0) # [total_selections]
|
||||||
|
all_features = torch.cat(all_features, dim=0) # [total_selections, dim]
|
||||||
|
|
||||||
|
# 🚀 批量计算每个memory的平均特征(避免循环)
|
||||||
|
unique_indices, inverse_indices = torch.unique(all_indices, return_inverse=True)
|
||||||
|
|
||||||
|
# 使用scatter_add批量聚合(确保数据类型一致)
|
||||||
|
aggregated_features = torch.zeros(unique_indices.size(0), dim, device=device, dtype=all_features.dtype)
|
||||||
|
count_per_memory = torch.zeros(unique_indices.size(0), device=device, dtype=all_features.dtype)
|
||||||
|
|
||||||
|
aggregated_features.scatter_add_(0, inverse_indices.unsqueeze(1).expand(-1, dim), all_features)
|
||||||
|
count_per_memory.scatter_add_(0, inverse_indices, torch.ones_like(inverse_indices, dtype=all_features.dtype))
|
||||||
|
|
||||||
|
# 计算平均值
|
||||||
|
avg_features = aggregated_features / count_per_memory.unsqueeze(1) # [unique_count, dim]
|
||||||
|
|
||||||
|
# 🚀 分批EMA更新(控制显存使用)
|
||||||
|
batch_size = 4096 # 每批处理4096个memory,控制显存
|
||||||
|
updated_memories = 0
|
||||||
|
|
||||||
|
for i in range(0, unique_indices.size(0), batch_size):
|
||||||
|
end_i = min(i + batch_size, unique_indices.size(0))
|
||||||
|
batch_indices = unique_indices[i:end_i]
|
||||||
|
batch_avg_features = avg_features[i:end_i]
|
||||||
|
|
||||||
|
# 当前批次的token解码
|
||||||
|
current_tokens_batch = self.memory_bank[batch_indices] # [batch_size, knowledge_length]
|
||||||
|
current_embeddings_batch = self.tok_embeddings(current_tokens_batch.view(-1)).view(
|
||||||
|
batch_indices.size(0), knowledge_length, dim) # [batch_size, knowledge_length, dim]
|
||||||
|
|
||||||
|
old_features_batch = current_embeddings_batch.view(batch_indices.size(0), -1) # [batch_size, knowledge_length * dim]
|
||||||
|
expanded_new_features = batch_avg_features.repeat(1, knowledge_length) # [batch_size, knowledge_length * dim]
|
||||||
|
|
||||||
|
# EMA更新:new = γ * old + (1-γ) * new_avg
|
||||||
|
updated_features_batch = (
|
||||||
|
self.params.ema_decay * old_features_batch +
|
||||||
|
(1 - self.params.ema_decay) * expanded_new_features
|
||||||
|
)
|
||||||
|
|
||||||
|
# 分批编码为token_ids(关键:控制输出层的输入大小)
|
||||||
|
updated_reshaped = updated_features_batch.view(-1, dim) # [batch_size * knowledge_length, dim]
|
||||||
|
logits_batch = self.output(updated_reshaped) # [batch_size * knowledge_length, vocab_size]
|
||||||
|
new_token_ids_batch = torch.argmax(logits_batch, dim=-1).view(batch_indices.size(0), knowledge_length)
|
||||||
|
|
||||||
|
# 🔥 新增: 应用冻结mask,只更新未冻结的条目
|
||||||
|
# 检查哪些batch_indices对应的条目没有被冻结
|
||||||
|
unfrozen_mask_batch = ~self.freeze_mask[batch_indices] # [batch_size] - True表示未冻结
|
||||||
|
|
||||||
|
# 只更新未冻结的条目
|
||||||
|
if unfrozen_mask_batch.any():
|
||||||
|
unfrozen_indices = batch_indices[unfrozen_mask_batch]
|
||||||
|
unfrozen_tokens = new_token_ids_batch[unfrozen_mask_batch]
|
||||||
|
self.memory_bank[unfrozen_indices] = unfrozen_tokens
|
||||||
|
updated_memories += unfrozen_indices.size(0)
|
||||||
|
else:
|
||||||
|
# 如果这个batch中的所有条目都被冻结,则跳过更新
|
||||||
|
pass
|
||||||
|
|
||||||
|
update_ratio = updated_memories / knowledge_num
|
||||||
|
|
||||||
|
# 🔥 新增: 计算冻结统计信息
|
||||||
|
frozen_count = self.freeze_mask.sum().item()
|
||||||
|
total_memories = knowledge_num
|
||||||
|
|
||||||
|
update_stats = {
|
||||||
|
'ema_update_applied': True,
|
||||||
|
'ema_step': self.ema_step_counter.item(),
|
||||||
|
'total_selections': total_selections,
|
||||||
|
'total_layers': total_layers,
|
||||||
|
'updated_memories': updated_memories,
|
||||||
|
'update_ratio': update_ratio,
|
||||||
|
'frozen_memories': frozen_count,
|
||||||
|
'frozen_ratio': frozen_count / total_memories,
|
||||||
|
'ema_decay': self.params.ema_decay,
|
||||||
|
'selected_memory_coverage': updated_memories / knowledge_num,
|
||||||
|
}
|
||||||
|
|
||||||
|
return update_stats
|
||||||
414
run_file/experiment_1_4_10.sh
Normal file
414
run_file/experiment_1_4_10.sh
Normal file
@ -0,0 +1,414 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
# ============================================================================
|
||||||
|
# MiniMind 实验脚本 - Experiment 1.4.10
|
||||||
|
# ============================================================================
|
||||||
|
#
|
||||||
|
# 🎯 实验目标:
|
||||||
|
# 基于实验1.4.9,实现四损失系统:CE + Balance + Similarity + Diversity
|
||||||
|
# 核心创新:Gumbel-Softmax选择机制 + 可微分相似度损失 + 候选集多样性约束
|
||||||
|
#
|
||||||
|
# 使用方法:
|
||||||
|
# bash run_file/experiment_1_4_10.sh
|
||||||
|
# ============================================================================
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
# 🧑🔬 实验基本信息
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
EXPERIMENT_VERSION="1.4.10"
|
||||||
|
EXPERIMENT_DESCRIPTION="四损失系统实验 - Gumbel-Softmax + 可微分相似度损失 + 多样性约束"
|
||||||
|
RESEARCHER_NAME="AI Assistant"
|
||||||
|
EXPERIMENT_DATE="$(date '+%Y-%m-%d %H:%M:%S')"
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
# 🤖 环境配置
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
|
||||||
|
# 调试和监控环境变量
|
||||||
|
export NCCL_DEBUG=INFO
|
||||||
|
export PYTHONFAULTHANDLER=1
|
||||||
|
export CUDA_LAUNCH_BLOCKING=1
|
||||||
|
|
||||||
|
# SwanLab 配置
|
||||||
|
export SWANLAB_PROJECT="MiniMind-Experiment-1.4.10"
|
||||||
|
|
||||||
|
# 日志配置
|
||||||
|
LOG_DIR="out/experiment_${EXPERIMENT_VERSION}"
|
||||||
|
mkdir -p "$LOG_DIR"
|
||||||
|
LOG_FILE="$LOG_DIR/experiment.log"
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
# 🤖 硬件配置
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
CUDA_VISIBLE_DEVICES="0,1,2,3"
|
||||||
|
NUM_PROCESSES="4"
|
||||||
|
MIXED_PRECISION="bf16"
|
||||||
|
MAIN_PROCESS_PORT="29500"
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
# 🤖 模型架构参数
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
MODEL_TYPE="model_memory" # 🔥 使用Token-based Memory模型
|
||||||
|
MODEL_SIZE="50.0"
|
||||||
|
DIM="512"
|
||||||
|
N_LAYERS="16"
|
||||||
|
N_HEADS="32"
|
||||||
|
MAX_SEQ_LEN="512"
|
||||||
|
USE_MOE="false"
|
||||||
|
|
||||||
|
# 🔥 知识库配置(四损失系统优化)
|
||||||
|
KNOWLEDGE_NUM="1048576" # 1M entries
|
||||||
|
KNOWLEDGE_LENGTH="8" # 🔥 增加到32个token提升表达能力
|
||||||
|
KNOWLEDGE_DIM="128" # 保留兼容性
|
||||||
|
DISABLE_DB="false"
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
# 🤖 训练超参数
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
EPOCHS="3"
|
||||||
|
EMBEDDING_EPOCH="42"
|
||||||
|
BATCH_SIZE="4" # 🔥 降低批次大小以适应更复杂的计算
|
||||||
|
ACCUMULATION_STEPS="4" # 🔥 增加累积步数保持有效批次大小
|
||||||
|
LEARNING_RATE="2e-4" # 🔥 适度降低学习率提升稳定性
|
||||||
|
DTYPE="bfloat16"
|
||||||
|
GRAD_CLIP="1.0"
|
||||||
|
WARMUP_ITERS="0"
|
||||||
|
|
||||||
|
# 🔥 四损失系统配置
|
||||||
|
BALANCE_LOSS_COEF="0.01" # 平衡损失系数
|
||||||
|
SIMILARITY_LOSS_COEF="0.15" # 🔥 相似度损失系数(核心损失)
|
||||||
|
DIVERSITY_LOSS_COEF="0.08" # 🔥 多样性损失系数(避免候选重复)
|
||||||
|
|
||||||
|
# 数据和缓存路径
|
||||||
|
DATA_PATH="/home/zym/Code/stable/merged_pretrain.jsonl"
|
||||||
|
DATABASE_INIT_PATH="/home/zym/Code/stable/sentence_trex_data.json"
|
||||||
|
CLUSTER_CACHE_PATH="None" # 禁用聚类缓存
|
||||||
|
VAL_DATA_PATH="dataset/stable/eval_data.json"
|
||||||
|
|
||||||
|
# 训练配置
|
||||||
|
NUM_WORKERS="8"
|
||||||
|
LOG_INTERVAL="100" # 🔥 更频繁的日志记录观察四个损失
|
||||||
|
VAL_INTERVAL="100"
|
||||||
|
SAVE_INTERVAL="10000"
|
||||||
|
|
||||||
|
# 性能分析配置
|
||||||
|
USE_PROFILE="true"
|
||||||
|
PROFILE_INTERVAL="10"
|
||||||
|
MEMORY_MONITOR_INTERVAL="100"
|
||||||
|
|
||||||
|
# 高级功能
|
||||||
|
USE_FLASH_ATTN="true"
|
||||||
|
FAST_CLUSTERING="true"
|
||||||
|
|
||||||
|
# 冻结率
|
||||||
|
FREEZE_RATIO="0.2"
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
# 🤖 预检查函数
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
check_environment() {
|
||||||
|
echo "🔍 环境检查中..."
|
||||||
|
|
||||||
|
# 检查GPU可用性
|
||||||
|
if ! nvidia-smi &> /dev/null; then
|
||||||
|
echo "❌ 错误: 未检测到GPU或nvidia-smi不可用"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
# 检查CUDA设备
|
||||||
|
if ! nvidia-smi -i "$CUDA_VISIBLE_DEVICES" &> /dev/null; then
|
||||||
|
echo "❌ 错误: GPU $CUDA_VISIBLE_DEVICES 不可用"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
# 检查数据文件
|
||||||
|
if [[ ! -f "$DATA_PATH" ]]; then
|
||||||
|
echo "❌ 错误: 训练数据文件不存在: $DATA_PATH"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [[ ! -f "$DATABASE_INIT_PATH" ]]; then
|
||||||
|
echo "❌ 错误: 数据库初始化文件不存在: $DATABASE_INIT_PATH"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
|
||||||
|
echo "✅ 环境检查通过"
|
||||||
|
}
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
# 🤖 实验信息记录
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
log_experiment_info() {
|
||||||
|
echo "📝 记录实验信息..."
|
||||||
|
cat > "$LOG_DIR/experiment_info.txt" << EOF
|
||||||
|
========================================
|
||||||
|
MiniMind 实验信息
|
||||||
|
========================================
|
||||||
|
实验版本: $EXPERIMENT_VERSION
|
||||||
|
实验描述: $EXPERIMENT_DESCRIPTION
|
||||||
|
研究者: $RESEARCHER_NAME
|
||||||
|
开始时间: $EXPERIMENT_DATE
|
||||||
|
========================================
|
||||||
|
硬件配置:
|
||||||
|
GPU设备: $CUDA_VISIBLE_DEVICES
|
||||||
|
进程数: $NUM_PROCESSES
|
||||||
|
混合精度: $MIXED_PRECISION
|
||||||
|
========================================
|
||||||
|
模型配置:
|
||||||
|
模型类型: $MODEL_TYPE (Token-based Memory + 四损失系统)
|
||||||
|
模型大小: $MODEL_SIZE MB
|
||||||
|
维度: $DIM
|
||||||
|
层数: $N_LAYERS
|
||||||
|
注意力头数: $N_HEADS
|
||||||
|
最大序列长度: $MAX_SEQ_LEN
|
||||||
|
知识库大小: $KNOWLEDGE_NUM (1M entries)
|
||||||
|
知识长度: $KNOWLEDGE_LENGTH (增强表达能力)
|
||||||
|
知识维度: $KNOWLEDGE_DIM (兼容性保留)
|
||||||
|
========================================
|
||||||
|
训练配置:
|
||||||
|
训练轮次: $EPOCHS
|
||||||
|
批次大小: $BATCH_SIZE (优化显存使用)
|
||||||
|
学习率: $LEARNING_RATE (稳定性优化)
|
||||||
|
梯度累积: $ACCUMULATION_STEPS (保持有效批次)
|
||||||
|
数据类型: $DTYPE
|
||||||
|
========================================
|
||||||
|
🔥 四损失系统配置:
|
||||||
|
平衡损失系数: $BALANCE_LOSS_COEF (记忆选择平衡)
|
||||||
|
相似度损失系数: $SIMILARITY_LOSS_COEF (语义匹配优化)
|
||||||
|
多样性损失系数: $DIVERSITY_LOSS_COEF (候选集多样性)
|
||||||
|
========================================
|
||||||
|
🔥 Gumbel-Softmax配置:
|
||||||
|
候选项数量: 32 (Product Key生成)
|
||||||
|
选择数量: 1 (Gumbel-Softmax选择最佳)
|
||||||
|
温度参数: 1.0 (平衡探索与利用)
|
||||||
|
选择机制: 硬选择 + Straight-Through Estimator
|
||||||
|
========================================
|
||||||
|
🔥 核心创新对比:
|
||||||
|
传统方法: 16个记忆平均融合 (缺乏语义针对性)
|
||||||
|
新方法: 32候选→1最佳 (语义相似度驱动)
|
||||||
|
旧相似度损失: no_grad计算 (不可微分)
|
||||||
|
新相似度损失: 可微分优化 (直接指导学习)
|
||||||
|
新增多样性: 候选集内部差异性约束
|
||||||
|
========================================
|
||||||
|
数据路径:
|
||||||
|
训练数据: $DATA_PATH
|
||||||
|
验证数据: $VAL_DATA_PATH
|
||||||
|
数据库初始化: $DATABASE_INIT_PATH
|
||||||
|
聚类缓存: $CLUSTER_CACHE_PATH
|
||||||
|
========================================
|
||||||
|
预期改进:
|
||||||
|
1. 相似度损失收敛: 从震荡→稳定下降
|
||||||
|
2. 记忆选择质量: 更精准的语义匹配
|
||||||
|
3. 生成文本质量: 更好的连贯性和相关性
|
||||||
|
4. 四损失平衡: CE主导,其他损失辅助
|
||||||
|
========================================
|
||||||
|
EOF
|
||||||
|
}
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
# 🤖 主执行函数
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
run_experiment() {
|
||||||
|
echo "🚀 开始执行实验 $EXPERIMENT_VERSION"
|
||||||
|
echo "📄 实验描述: $EXPERIMENT_DESCRIPTION"
|
||||||
|
echo "⏰ 开始时间: $EXPERIMENT_DATE"
|
||||||
|
|
||||||
|
# 构建训练命令
|
||||||
|
local train_cmd="CUDA_VISIBLE_DEVICES=$CUDA_VISIBLE_DEVICES accelerate launch --config_file accelerate_config.yaml train_pretrain_accelerate.py"
|
||||||
|
|
||||||
|
# 添加训练参数
|
||||||
|
train_cmd+=" --out_dir \"$LOG_DIR\""
|
||||||
|
train_cmd+=" --epochs $EPOCHS"
|
||||||
|
train_cmd+=" --embedding_epoch $EMBEDDING_EPOCH"
|
||||||
|
train_cmd+=" --batch_size $BATCH_SIZE"
|
||||||
|
train_cmd+=" --learning_rate $LEARNING_RATE"
|
||||||
|
train_cmd+=" --dtype $DTYPE"
|
||||||
|
train_cmd+=" --num_workers $NUM_WORKERS"
|
||||||
|
train_cmd+=" --accumulation_steps $ACCUMULATION_STEPS"
|
||||||
|
train_cmd+=" --grad_clip $GRAD_CLIP"
|
||||||
|
train_cmd+=" --warmup_iters $WARMUP_ITERS"
|
||||||
|
train_cmd+=" --log_interval $LOG_INTERVAL"
|
||||||
|
train_cmd+=" --val_interval $VAL_INTERVAL"
|
||||||
|
train_cmd+=" --save_interval $SAVE_INTERVAL"
|
||||||
|
train_cmd+=" --dim $DIM"
|
||||||
|
train_cmd+=" --n_layers $N_LAYERS"
|
||||||
|
train_cmd+=" --n_heads $N_HEADS"
|
||||||
|
train_cmd+=" --max_seq_len $MAX_SEQ_LEN"
|
||||||
|
train_cmd+=" --data_path \"$DATA_PATH\""
|
||||||
|
train_cmd+=" --val_data_path \"$VAL_DATA_PATH\""
|
||||||
|
train_cmd+=" --knowledge_num $KNOWLEDGE_NUM"
|
||||||
|
train_cmd+=" --knowledge_length $KNOWLEDGE_LENGTH"
|
||||||
|
train_cmd+=" --database_init_path \"$DATABASE_INIT_PATH\""
|
||||||
|
train_cmd+=" --memory_monitor_interval $MEMORY_MONITOR_INTERVAL"
|
||||||
|
train_cmd+=" --model_type \"$MODEL_TYPE\""
|
||||||
|
train_cmd+=" --model_size $MODEL_SIZE"
|
||||||
|
train_cmd+=" --freeze_ratio $FREEZE_RATIO"
|
||||||
|
|
||||||
|
# 🔥 四损失系统参数
|
||||||
|
train_cmd+=" --balance_loss_coef $BALANCE_LOSS_COEF"
|
||||||
|
train_cmd+=" --similarity_loss_coef $SIMILARITY_LOSS_COEF"
|
||||||
|
train_cmd+=" --diversity_loss_coef $DIVERSITY_LOSS_COEF"
|
||||||
|
|
||||||
|
# 可选参数
|
||||||
|
if [[ "$USE_PROFILE" == "true" ]]; then
|
||||||
|
train_cmd+=" --profile"
|
||||||
|
train_cmd+=" --profile_interval $PROFILE_INTERVAL"
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [[ "$USE_FLASH_ATTN" == "true" ]]; then
|
||||||
|
train_cmd+=" --use_flash_attn"
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [[ "$FAST_CLUSTERING" == "true" ]]; then
|
||||||
|
train_cmd+=" --fast_clustering"
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [[ "$CLUSTER_CACHE_PATH" != "None" ]]; then
|
||||||
|
train_cmd+=" --cluster_cache_path \"$CLUSTER_CACHE_PATH\""
|
||||||
|
fi
|
||||||
|
|
||||||
|
# SwanLab配置
|
||||||
|
train_cmd+=" --use_swanlab"
|
||||||
|
train_cmd+=" --swanlab_project \"$SWANLAB_PROJECT\""
|
||||||
|
# train_cmd+=" --swanlab_online True"
|
||||||
|
|
||||||
|
echo "📋 执行命令:"
|
||||||
|
echo "$train_cmd"
|
||||||
|
echo
|
||||||
|
|
||||||
|
# 记录命令到日志文件
|
||||||
|
echo "执行命令: $train_cmd" >> "$LOG_FILE"
|
||||||
|
echo "开始时间: $(date)" >> "$LOG_FILE"
|
||||||
|
|
||||||
|
# 使用nohup执行训练(后台运行,输出写入日志文件)
|
||||||
|
echo "🔄 使用nohup后台运行训练,输出将写入日志文件: $LOG_FILE"
|
||||||
|
|
||||||
|
# 创建训练脚本
|
||||||
|
train_script="/tmp/train_${EXPERIMENT_VERSION}.sh"
|
||||||
|
cat > "$train_script" << EOF
|
||||||
|
#!/bin/bash
|
||||||
|
# cd /home/pci/nas/AI_Large_Model_Team/ycz/Minimind
|
||||||
|
# source .venv/bin/activate
|
||||||
|
$train_cmd
|
||||||
|
echo "结束时间: \$(date)"
|
||||||
|
echo "退出代码: \$?"
|
||||||
|
EOF
|
||||||
|
chmod +x "$train_script"
|
||||||
|
|
||||||
|
# 使用nohup后台运行
|
||||||
|
nohup bash "$train_script" >> "$LOG_FILE" 2>&1 &
|
||||||
|
local train_pid=$!
|
||||||
|
|
||||||
|
echo "🔥 训练进程已启动,PID: $train_pid"
|
||||||
|
echo "训练PID: $train_pid" >> "$LOG_FILE"
|
||||||
|
echo "训练脚本: $train_script" >> "$LOG_FILE"
|
||||||
|
|
||||||
|
# 等待几秒确保进程启动
|
||||||
|
sleep 5
|
||||||
|
|
||||||
|
# 检查进程是否还在运行
|
||||||
|
if kill -0 $train_pid 2>/dev/null; then
|
||||||
|
echo "✅ 训练进程正在后台运行"
|
||||||
|
echo "📋 实时查看日志: tail -f $LOG_FILE"
|
||||||
|
echo "📋 检查进程状态: ps -p $train_pid"
|
||||||
|
echo "🛑 停止训练: kill $train_pid"
|
||||||
|
echo "📈 SwanLab: https://swanlab.cn/project/$SWANLAB_PROJECT"
|
||||||
|
echo ""
|
||||||
|
echo "🧠 四损失系统机制正在测试中..."
|
||||||
|
echo " 🔥 损失结构: CE + Balance + Similarity + Diversity"
|
||||||
|
echo " 🔥 候选机制: 32个候选 → Gumbel-Softmax选择1个最佳"
|
||||||
|
echo " 🔥 相似度损失: 可微分优化 (修复震荡问题)"
|
||||||
|
echo " 🔥 多样性约束: 候选集内部差异性正则化"
|
||||||
|
echo " 🔥 选择策略: 语义相似度驱动 vs 随机平均"
|
||||||
|
echo ""
|
||||||
|
echo "📊 与实验1.4.9对比:"
|
||||||
|
echo " - 选择机制: 平均融合 → 最优选择"
|
||||||
|
echo " - 相似度损失: 不可微分 → 可微分"
|
||||||
|
echo " - 候选多样性: 无约束 → 多样性正则化"
|
||||||
|
echo " - 损失系统: 三损失 → 四损失平衡"
|
||||||
|
echo ""
|
||||||
|
echo "训练正在后台运行,可以安全关闭终端。"
|
||||||
|
echo ""
|
||||||
|
echo "🎯 预期改进:"
|
||||||
|
echo " - 相似度损失: 稳定收敛 (不再震荡)"
|
||||||
|
echo " - CE Loss: < 0.8 (改善语言建模)"
|
||||||
|
echo " - 生成质量: 更连贯的文本输出"
|
||||||
|
echo " - 记忆选择: 更精准的语义匹配"
|
||||||
|
echo ""
|
||||||
|
echo "⏱️ 预计训练时间: 18-22小时 (额外计算开销)"
|
||||||
|
echo "📊 预计GPU占用: ~24GB (Gumbel-Softmax + 多样性计算)"
|
||||||
|
echo ""
|
||||||
|
echo "🔍 关键监控指标:"
|
||||||
|
echo " - Similarity Loss: 期望从1.9震荡→稳定下降"
|
||||||
|
echo " - Diversity Loss: 保持适中值避免过度惩罚"
|
||||||
|
echo " - Selection Entropy: 监控选择多样性"
|
||||||
|
echo " - Selected Similarity: 观察选中记忆的相似度"
|
||||||
|
echo ""
|
||||||
|
else
|
||||||
|
echo "❌ 训练进程启动失败"
|
||||||
|
echo "📋 查看日志: $LOG_FILE"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
}
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
# 🤖 清理函数
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
cleanup() {
|
||||||
|
echo "🧹 清理临时文件..."
|
||||||
|
# 删除临时验证文件
|
||||||
|
rm -f /tmp/temp_val.jsonl
|
||||||
|
}
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
# 🤖 信号处理
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
trap cleanup EXIT
|
||||||
|
trap 'echo "❌ 实验被中断"; cleanup; exit 130' INT TERM
|
||||||
|
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
# 🤖 主程序入口
|
||||||
|
# ----------------------------------------------------------------------------
|
||||||
|
main() {
|
||||||
|
echo "============================================================================"
|
||||||
|
echo "🧠 MiniMind 预训练实验 1.4.10"
|
||||||
|
echo "🎯 四损失系统 - Gumbel-Softmax + 可微分相似度损失 + 多样性约束"
|
||||||
|
echo "============================================================================"
|
||||||
|
echo ""
|
||||||
|
echo "🔥 核心创新:"
|
||||||
|
echo " ► 四损失架构: CE + Balance + Similarity + Diversity"
|
||||||
|
echo " ► Gumbel-Softmax: 32候选→1最佳 (可微分离散选择)"
|
||||||
|
echo " ► 相似度损失: 可微分优化 (修复震荡)"
|
||||||
|
echo " ► 多样性约束: 候选集内部差异性正则化"
|
||||||
|
echo " ► 语义选择: 相似度驱动 vs 平均融合"
|
||||||
|
echo ""
|
||||||
|
echo "🎯 实验假设:"
|
||||||
|
echo " ✓ 可微分相似度损失解决震荡问题"
|
||||||
|
echo " ✓ 语义驱动选择改善记忆利用质量"
|
||||||
|
echo " ✓ 多样性约束防止候选集退化"
|
||||||
|
echo " ✓ 四损失平衡提升整体模型性能"
|
||||||
|
echo ""
|
||||||
|
echo "🔧 关键技术细节:"
|
||||||
|
echo " ► Straight-Through Estimator确保梯度流"
|
||||||
|
echo " ► 候选集多样性通过余弦相似度矩阵计算"
|
||||||
|
echo " ► Gumbel噪声增强选择随机性"
|
||||||
|
echo " ► 硬选择保持离散性,软梯度保持可微性"
|
||||||
|
echo ""
|
||||||
|
echo "============================================================================"
|
||||||
|
|
||||||
|
# 执行检查和初始化
|
||||||
|
check_environment
|
||||||
|
log_experiment_info
|
||||||
|
|
||||||
|
# 运行实验
|
||||||
|
run_experiment
|
||||||
|
|
||||||
|
echo "============================================================================"
|
||||||
|
echo "✅ 实验 $EXPERIMENT_VERSION 启动完成"
|
||||||
|
echo "📅 启动时间: $(date)"
|
||||||
|
echo "============================================================================"
|
||||||
|
}
|
||||||
|
|
||||||
|
# 执行主程序
|
||||||
|
main "$@"
|
||||||
@ -37,9 +37,13 @@ EXPERIMENT_DATE="$(date '+%Y-%m-%d %H:%M:%S')" # 自动记录实验开始时间
|
|||||||
# source "$VIRTUAL_ENV/bin/activate"
|
# source "$VIRTUAL_ENV/bin/activate"
|
||||||
|
|
||||||
# 调试和监控环境变量
|
# 调试和监控环境变量
|
||||||
export NCCL_DEBUG=INFO # NCCL 调试信息
|
|
||||||
export PYTHONFAULTHANDLER=1 # Python 故障处理
|
export PYTHONFAULTHANDLER=1 # Python 故障处理
|
||||||
export CUDA_LAUNCH_BLOCKING=1 # CUDA 同步执行(调试用)
|
# export NCCL_DEBUG=INFO # NCCL 调试信息(仅调试时启用)
|
||||||
|
# export CUDA_LAUNCH_BLOCKING=1 # CUDA 同步执行(严重影响性能,仅调试时启用)
|
||||||
|
|
||||||
|
# 🔥 强制禁用输出缓冲,确保日志立即写入(不影响GPU性能)
|
||||||
|
export PYTHONUNBUFFERED=1 # Python 解释器不缓冲输出
|
||||||
|
export PYTHONIOENCODING=utf-8 # 确保编码一致性
|
||||||
|
|
||||||
# SwanLab 配置
|
# SwanLab 配置
|
||||||
export SWANLAB_API_KEY="[SWANLAB_API_KEY]" # 🤖 [AI构建] SwanLab API密钥
|
export SWANLAB_API_KEY="[SWANLAB_API_KEY]" # 🤖 [AI构建] SwanLab API密钥
|
||||||
@ -292,8 +296,8 @@ echo "退出代码: \$?"
|
|||||||
EOF
|
EOF
|
||||||
chmod +x "$train_script"
|
chmod +x "$train_script"
|
||||||
|
|
||||||
# 使用nohup后台运行
|
# 使用nohup后台运行,并使用stdbuf禁用缓冲
|
||||||
nohup bash "$train_script" >> "$LOG_FILE" 2>&1 &
|
nohup stdbuf -oL -eL bash "$train_script" >> "$LOG_FILE" 2>&1 &
|
||||||
local train_pid=$!
|
local train_pid=$!
|
||||||
|
|
||||||
echo "🔥 训练进程已启动,PID: $train_pid"
|
echo "🔥 训练进程已启动,PID: $train_pid"
|
||||||
|
|||||||
@ -1,6 +1,10 @@
|
|||||||
import os
|
import os
|
||||||
# 设置环境变量 - 将wandb替换为SwanLab
|
# 设置环境变量 - 将wandb替换为SwanLab
|
||||||
# os.environ["SWANLAB_MODE"] = "online" # SwanLab使用在线模式
|
# os.environ["SWANLAB_MODE"] = "online" # SwanLab使用在线模式
|
||||||
|
|
||||||
|
# 🔥 强制禁用输出缓冲,确保日志立即写入
|
||||||
|
os.environ['PYTHONUNBUFFERED'] = '1' # Python 解释器不缓冲输出
|
||||||
|
os.environ['PYTHONIOENCODING'] = 'utf-8' # 确保编码一致性
|
||||||
import platform
|
import platform
|
||||||
import argparse
|
import argparse
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
@ -92,7 +96,9 @@ def log_memory_status(step, prefetch_batches, accelerator, stage="", detailed=Fa
|
|||||||
def Logger(msg, accelerator=None):
|
def Logger(msg, accelerator=None):
|
||||||
# 如果没有提供accelerator,则只在主进程打印
|
# 如果没有提供accelerator,则只在主进程打印
|
||||||
if accelerator is None or accelerator.is_main_process:
|
if accelerator is None or accelerator.is_main_process:
|
||||||
print(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] {msg}")
|
print(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] {msg}", flush=True) # 强制刷新输出缓冲
|
||||||
|
import sys
|
||||||
|
sys.stdout.flush() # 确保立即写入
|
||||||
|
|
||||||
# Helper function to format seconds into HH:MM:SS
|
# Helper function to format seconds into HH:MM:SS
|
||||||
def format_time(seconds):
|
def format_time(seconds):
|
||||||
@ -1003,25 +1009,42 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
|
|||||||
).view(Y.size())
|
).view(Y.size())
|
||||||
ce_loss = (ce_loss * loss_mask).sum() / loss_mask.sum()
|
ce_loss = (ce_loss * loss_mask).sum() / loss_mask.sum()
|
||||||
|
|
||||||
# 获取平衡损失(如果模型支持)
|
# 🔥 实验1.4.9: 四损失系统处理
|
||||||
balance_loss = 0
|
balance_loss = 0
|
||||||
|
similarity_loss = 0
|
||||||
|
diversity_loss = 0
|
||||||
|
|
||||||
if hasattr(res, 'aux_loss') and res.aux_loss is not None:
|
if hasattr(res, 'aux_loss') and res.aux_loss is not None:
|
||||||
balance_loss = res.aux_loss
|
aux_loss = res.aux_loss
|
||||||
|
if isinstance(aux_loss, dict):
|
||||||
|
# 新的四损失结构
|
||||||
|
balance_loss = aux_loss.get('balance_loss', 0)
|
||||||
|
similarity_loss = aux_loss.get('similarity_loss', 0)
|
||||||
|
diversity_loss = aux_loss.get('diversity_loss', 0)
|
||||||
|
else:
|
||||||
|
# 向后兼容:旧的单一aux_loss
|
||||||
|
balance_loss = aux_loss
|
||||||
|
|
||||||
# 获取余弦相似度统计信息(如果模型支持)
|
# 获取余弦相似度统计信息(如果模型支持)
|
||||||
cosine_stats = {}
|
cosine_stats = {}
|
||||||
|
avg_selected_similarity = 0.0
|
||||||
if hasattr(res, 'cosine_stats') and res.cosine_stats is not None:
|
if hasattr(res, 'cosine_stats') and res.cosine_stats is not None:
|
||||||
cosine_stats = res.cosine_stats
|
cosine_stats = res.cosine_stats
|
||||||
# 计算平均余弦相似度
|
# 🔥 使用选中记忆的平均相似度(更精确的指标)
|
||||||
avg_cosine_similarity = 0.0
|
selected_similarities = [v for k, v in cosine_stats.items() if k.endswith('_selected_avg_similarity')]
|
||||||
if cosine_stats:
|
if selected_similarities:
|
||||||
# 计算所有层的平均余弦相似度
|
avg_selected_similarity = np.mean(selected_similarities)
|
||||||
cosine_similarities = [v for k, v in cosine_stats.items() if k.endswith('_avg_cosine_similarity')]
|
|
||||||
if cosine_similarities:
|
|
||||||
avg_cosine_similarity = np.mean(cosine_similarities)
|
|
||||||
|
|
||||||
# 计算总损失
|
# 🔥 四损失系统:CE + Balance + Similarity + Diversity
|
||||||
total_loss = ce_loss + args.balance_loss_coef * balance_loss + 2 * (1-avg_cosine_similarity)
|
# 损失系数可以通过命令行参数调整
|
||||||
|
balance_coef = getattr(args, 'balance_loss_coef', 0.01)
|
||||||
|
similarity_coef = getattr(args, 'similarity_loss_coef', 0.1)
|
||||||
|
diversity_coef = getattr(args, 'diversity_loss_coef', 0.05)
|
||||||
|
|
||||||
|
total_loss = (ce_loss +
|
||||||
|
balance_coef * balance_loss +
|
||||||
|
similarity_coef * similarity_loss +
|
||||||
|
diversity_coef * diversity_loss)
|
||||||
loss = total_loss / args.accumulation_steps
|
loss = total_loss / args.accumulation_steps
|
||||||
|
|
||||||
# 计时前向传播结束 (只在主进程进行)
|
# 计时前向传播结束 (只在主进程进行)
|
||||||
@ -1220,13 +1243,15 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
|
|||||||
layer_stats = res.layer_stats
|
layer_stats = res.layer_stats
|
||||||
|
|
||||||
|
|
||||||
# 构建日志字典
|
# 🔥 构建四损失系统的日志字典
|
||||||
log_dict = {
|
log_dict = {
|
||||||
"epoch": epoch + 1,
|
"epoch": epoch + 1,
|
||||||
"step": step + 1,
|
"step": step + 1,
|
||||||
"total_steps_in_epoch": total_steps_in_epoch,
|
"total_steps_in_epoch": total_steps_in_epoch,
|
||||||
"train/loss_ce": ce_loss.item(),
|
"train/loss_ce": ce_loss.item(),
|
||||||
"train/loss_balance": balance_loss.item() if isinstance(balance_loss, torch.Tensor) else balance_loss,
|
"train/loss_balance": balance_loss.item() if isinstance(balance_loss, torch.Tensor) else balance_loss,
|
||||||
|
"train/loss_similarity": similarity_loss.item() if isinstance(similarity_loss, torch.Tensor) else similarity_loss,
|
||||||
|
"train/loss_diversity": diversity_loss.item() if isinstance(diversity_loss, torch.Tensor) else diversity_loss,
|
||||||
"train/loss_total": total_loss.item(),
|
"train/loss_total": total_loss.item(),
|
||||||
"lr": current_lr,
|
"lr": current_lr,
|
||||||
"tokens_per_sec": tokens_per_sec,
|
"tokens_per_sec": tokens_per_sec,
|
||||||
@ -1255,17 +1280,20 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
|
|||||||
'memory/avg_coverage_rate': avg_coverage,
|
'memory/avg_coverage_rate': avg_coverage,
|
||||||
'memory/total_dead_memories': total_dead,
|
'memory/total_dead_memories': total_dead,
|
||||||
'memory/total_hot_memories': total_hot,
|
'memory/total_hot_memories': total_hot,
|
||||||
'train/avg_cosine_similarity': avg_cosine_similarity,
|
'train/avg_selected_similarity': avg_selected_similarity, # 🔥 使用选中记忆的相似度
|
||||||
})
|
})
|
||||||
|
|
||||||
|
# 🔥 四损失系统的控制台输出
|
||||||
Logger(f"Epoch {epoch+1}/{args.epochs}, Step {step+1}/{total_steps_in_epoch}, "
|
Logger(f"Epoch {epoch+1}/{args.epochs}, Step {step+1}/{total_steps_in_epoch}, "
|
||||||
f"CE Loss: {log_dict['train/loss_ce']:.4f}, "
|
f"CE: {log_dict['train/loss_ce']:.4f}, "
|
||||||
f"Balance Loss: {log_dict['train/loss_balance']:.4f}, "
|
f"Bal: {log_dict['train/loss_balance']:.4f}, "
|
||||||
f"Avg Cosine Sim: {avg_cosine_similarity:.4f}, "
|
f"Sim: {log_dict['train/loss_similarity']:.4f}, "
|
||||||
f"Total Loss: {log_dict['train/loss_total']:.4f}, "
|
f"Div: {log_dict['train/loss_diversity']:.4f}, "
|
||||||
f"Val Loss: {log_dict.get('val/loss', 'N/A')}, "
|
f"Total: {log_dict['train/loss_total']:.4f}, "
|
||||||
|
f"Val: {log_dict.get('val/loss', 'N/A')}, "
|
||||||
f"LR: {log_dict['lr']:.6f}, "
|
f"LR: {log_dict['lr']:.6f}, "
|
||||||
f"Speed: {log_dict['tokens_per_sec']:.2f} tokens/sec | "
|
f"Speed: {log_dict['tokens_per_sec']:.2f} tokens/sec | "
|
||||||
|
f"Sel.Sim: {avg_selected_similarity:.4f} | "
|
||||||
f"Epoch Time Left: {format_time(epoch_remaining_time)} | "
|
f"Epoch Time Left: {format_time(epoch_remaining_time)} | "
|
||||||
f"Total Time Left: {format_time(total_remaining_time)}", accelerator)
|
f"Total Time Left: {format_time(total_remaining_time)}", accelerator)
|
||||||
|
|
||||||
@ -1348,7 +1376,7 @@ def main():
|
|||||||
parser.add_argument("--knowledge_dim", type=int, default=128,help="知识库的向量维度")
|
parser.add_argument("--knowledge_dim", type=int, default=128,help="知识库的向量维度")
|
||||||
parser.add_argument("--database_init_path", type=str, default="/home/iomgaa/Code/Minimind/dataset/stable/sentence_trex_data.json", help="数据库初始化路径")
|
parser.add_argument("--database_init_path", type=str, default="/home/iomgaa/Code/Minimind/dataset/stable/sentence_trex_data.json", help="数据库初始化路径")
|
||||||
parser.add_argument("--fast_clustering", action="store_true", default=True, help="使用快速近似聚类算法(适用于大数据集)")
|
parser.add_argument("--fast_clustering", action="store_true", default=True, help="使用快速近似聚类算法(适用于大数据集)")
|
||||||
parser.add_argument("--cluster_cache_path", type=str, default="/home/iomgaa/Code/Minimind/cache/cluster_tokens_single.pt", help="聚类结果缓存文件路径")
|
parser.add_argument("--cluster_cache_path", type=str, default="./cache/cluster_tokens_single.pt", help="聚类结果缓存文件路径")
|
||||||
parser.add_argument("--recompute_clusters", action="store_true", default=False, help="强制重新计算聚类,忽略缓存文件")
|
parser.add_argument("--recompute_clusters", action="store_true", default=False, help="强制重新计算聚类,忽略缓存文件")
|
||||||
parser.add_argument("--memory_monitor", action="store_true", default=False, help="启用内存监控")
|
parser.add_argument("--memory_monitor", action="store_true", default=False, help="启用内存监控")
|
||||||
parser.add_argument("--memory_monitor_interval", type=int, default=10, help="内存监控间隔(步数)")
|
parser.add_argument("--memory_monitor_interval", type=int, default=10, help="内存监控间隔(步数)")
|
||||||
@ -1356,8 +1384,11 @@ def main():
|
|||||||
parser.add_argument("--model_size", type=float, default=50.0, help="模型大小")
|
parser.add_argument("--model_size", type=float, default=50.0, help="模型大小")
|
||||||
parser.add_argument("--swanlab_online", type=bool, default=False, help="是否使用在线SwanLab服务")
|
parser.add_argument("--swanlab_online", type=bool, default=False, help="是否使用在线SwanLab服务")
|
||||||
parser.add_argument("--balance_loss_coef", type=float, default=0.01, help="平衡损失系数")
|
parser.add_argument("--balance_loss_coef", type=float, default=0.01, help="平衡损失系数")
|
||||||
|
parser.add_argument("--similarity_loss_coef", type=float, default=0.1, help="相似度损失系数(实验1.4.9)")
|
||||||
|
parser.add_argument("--diversity_loss_coef", type=float, default=0.05, help="多样性损失系数(实验1.4.9)")
|
||||||
parser.add_argument("--val_data_path", type=str, default="/home/zym/Code/stable/eval_data.json", help="验证数据集路径")
|
parser.add_argument("--val_data_path", type=str, default="/home/zym/Code/stable/eval_data.json", help="验证数据集路径")
|
||||||
parser.add_argument("--val_interval", type=int, default=100, help="验证评估间隔")
|
parser.add_argument("--val_interval", type=int, default=100, help="验证评估间隔")
|
||||||
|
parser.add_argument("--freeze_ratio", type=float, default=0.2, help="冻结率")
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
#########################################################
|
#########################################################
|
||||||
@ -1396,7 +1427,8 @@ def main():
|
|||||||
flash_attn=args.use_flash_attn,
|
flash_attn=args.use_flash_attn,
|
||||||
knowledge_num=args.knowledge_num,
|
knowledge_num=args.knowledge_num,
|
||||||
knowledge_length=args.knowledge_length,
|
knowledge_length=args.knowledge_length,
|
||||||
embeddings_epoch=args.embedding_epoch
|
embeddings_epoch=args.embedding_epoch,
|
||||||
|
freeze_ratio=args.freeze_ratio
|
||||||
)
|
)
|
||||||
|
|
||||||
#########################################################
|
#########################################################
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user