Compare commits

...

3 Commits

Author SHA1 Message Date
770c34f0e3 DynamicKV-LLM Pretrain v1.2.1 2025-06-08 02:20:36 +00:00
1678e739b6 DynamicKV-LLM Pretrain v1.2.0 2025-06-07 02:41:45 +00:00
000e17a93f 修正了key分解、负载均衡等错误 2025-06-06 11:25:59 +08:00
7 changed files with 483 additions and 768 deletions

2
.gitignore vendored
View File

@ -7,3 +7,5 @@ models/sentence_transformers/
models/sentence_transformers_cache/ models/sentence_transformers_cache/
**/*.pyc **/*.pyc
qwen2-1.7B/ qwen2-1.7B/
images/
cache/

102
.vscode/launch.json vendored Normal file
View File

@ -0,0 +1,102 @@
{
"version": "0.2.0",
"configurations": [
{
"name": "Debug Train Pretrain Accelerate",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
"console": "integratedTerminal",
"python": "/opt/conda/envs/mini/bin/python",
"cwd": "${workspaceFolder}",
"env": {
"PYTHONPATH": "${workspaceFolder}",
"CUDA_VISIBLE_DEVICES": "0"
},
"justMyCode": false,
"stopOnEntry": false,
"redirectOutput": true
},
{
"name": "Debug Train Pretrain Accelerate (Multi-GPU)",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
"console": "integratedTerminal",
"python": "/opt/conda/envs/mini/bin/python",
"args": [
"--hidden_size", "512",
"--max_seq_len", "512",
"--n_layers", "8",
"--batch_size", "8",
"--epochs", "1"
],
"cwd": "${workspaceFolder}",
"env": {
"PYTHONPATH": "${workspaceFolder}",
"CUDA_VISIBLE_DEVICES": "0,1"
},
"justMyCode": false,
"stopOnEntry": false,
"redirectOutput": true
},
{
"name": "Debug Train Pretrain Accelerate (Small Test)",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
"console": "integratedTerminal",
"python": "/opt/conda/envs/mini/bin/python",
"args": [
"--hidden_size", "512",
"--max_seq_len", "512",
"--n_layers", "8",
"--batch_size", "2",
"--epochs", "1",
"--log_interval", "10",
"--save_interval", "100",
"--accumulation_steps", "4"
],
"cwd": "${workspaceFolder}",
"env": {
"PYTHONPATH": "${workspaceFolder}",
"CUDA_VISIBLE_DEVICES": "0",
"WANDB_MODE": "offline"
},
"justMyCode": false,
"stopOnEntry": false,
"redirectOutput": true
},
{
"name": "Debug ExtractDB Comparison",
"type": "python",
"request": "launch",
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
"console": "integratedTerminal",
"python": "/opt/conda/envs/mini/bin/python",
"args": [
"--hidden_size", "512",
"--max_seq_len", "256",
"--n_layers", "4",
"--batch_size", "2",
"--epochs", "1",
"--log_interval", "10",
"--save_interval", "200",
"--accumulation_steps", "2",
"--comparison_mode",
"--knowledge_num", "256",
"--knowledge_length", "64",
"--comparison_mode"
],
"cwd": "${workspaceFolder}",
"env": {
"PYTHONPATH": "${workspaceFolder}",
"CUDA_VISIBLE_DEVICES": "0",
"WANDB_MODE": "offline"
},
"justMyCode": false,
"stopOnEntry": false,
"redirectOutput": true
}
]
}

18
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,18 @@
{
"python.pythonPath": "/home/iomgaa/miniconda3/envs/accelerate/bin/python",
"python.defaultInterpreterPath": "/home/iomgaa/miniconda3/envs/accelerate/bin/python",
"python.terminal.activateEnvironment": true,
"python.terminal.activateEnvInCurrentTerminal": true,
"python.linting.enabled": true,
"python.linting.pylintEnabled": false,
"python.linting.flake8Enabled": true,
"python.formatting.provider": "black",
"python.analysis.autoImportCompletions": true,
"python.analysis.typeCheckingMode": "off",
"files.exclude": {
"**/__pycache__": true,
"**/*.pyc": true,
"**/.git": false,
"**/wandb": false
}
}

View File

@ -19,6 +19,7 @@ class LMConfig(PretrainedConfig):
rope_theta: int = 1e6, rope_theta: int = 1e6,
dropout: float = 0.0, dropout: float = 0.0,
flash_attn: bool = True, flash_attn: bool = True,
embeddings_epoch: int = 2,
#################################################### ####################################################
# DB related configurations # DB related configurations
#################################################### ####################################################
@ -39,6 +40,7 @@ class LMConfig(PretrainedConfig):
#################################################### ####################################################
knowledge_num: int = 64*64, knowledge_num: int = 64*64,
knowledge_length: int = 8, knowledge_length: int = 8,
knowledge_dim: int = 128,
**kwargs, **kwargs,
): ):
self.dim = dim self.dim = dim
@ -53,6 +55,7 @@ class LMConfig(PretrainedConfig):
self.rope_theta = rope_theta self.rope_theta = rope_theta
self.dropout = dropout self.dropout = dropout
self.flash_attn = flash_attn self.flash_attn = flash_attn
self.embeddings_epoch = embeddings_epoch
#################################################### ####################################################
# DB related configurations # DB related configurations
#################################################### ####################################################
@ -72,4 +75,5 @@ class LMConfig(PretrainedConfig):
#################################################### ####################################################
self.knowledge_num = knowledge_num self.knowledge_num = knowledge_num
self.knowledge_length = knowledge_length self.knowledge_length = knowledge_length
self.knowledge_dim = knowledge_dim
super().__init__(**kwargs) super().__init__(**kwargs)

View File

@ -11,14 +11,9 @@ import torch.nn.functional as F
from torch import nn from torch import nn
from transformers import PreTrainedModel from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.modeling_outputs import CausalLMOutputWithPast
from torch import nn, einsum
from einops import rearrange, repeat
def exists(val):
return val is not None
# RMSNorm 类定义了一个用于归一化输入张量的模块。
class RMSNorm(torch.nn.Module): class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float = 1e-6): def __init__(self, dim: int, eps: float = 1e-6):
super().__init__() super().__init__()
@ -31,7 +26,7 @@ class RMSNorm(torch.nn.Module):
def forward(self, x): def forward(self, x):
return self.weight * self._norm(x.float()).type_as(x) return self.weight * self._norm(x.float()).type_as(x)
# precompute_pos_cis 函数用于预计算位置编码(复数版本)。
def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6): def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore t = torch.arange(end, device=freqs.device) # type: ignore
@ -39,7 +34,7 @@ def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64 pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
return pos_cis return pos_cis
# apply_rotary_emb 函数用于应用旋转位置编码(复数版本)。
def apply_rotary_emb(xq, xk, pos_cis): def apply_rotary_emb(xq, xk, pos_cis):
def unite_shape(pos_cis, x): def unite_shape(pos_cis, x):
ndim = x.ndim ndim = x.ndim
@ -55,200 +50,194 @@ def apply_rotary_emb(xq, xk, pos_cis):
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3) xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk) return xq_out.type_as(xq), xk_out.type_as(xk)
# precompute_pos_cis_real 函数用于预计算位置编码(实数版本)。 class KnowledgeDataset(nn.Module):
def precompute_pos_cis_real(dim: int, end: int = int(32 * 1024), theta: float = 1e6): def __init__(self, params, tok_embeddings, is_train=True):
"""使用实数张量实现位置编码,避免使用复数张量
这个函数与precompute_pos_cis完全等价但使用实数张量而非复数张量
原始函数生成形状为[seq_len, dim//2]的复数张量其中实部全为1虚部为旋转角度
这个函数生成形状为[seq_len, dim]的实数张量其中偶数索引是cos(角度)奇数索引是sin(角度)
"""
# 确保dim是偶数
if dim % 2 != 0:
raise ValueError(f"维度必须是偶数,但得到了 {dim}")
# 复制原始函数的频率计算逻辑
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device)
freqs = torch.outer(t, freqs).float()
# 计算cos和sin值
# 在复数版本中pos_cis = torch.polar(torch.ones_like(freqs), freqs)
# 等价于 cos(freqs) + i*sin(freqs)
cos = torch.cos(freqs)
sin = torch.sin(freqs)
# 创建实数张量交错排列cos和sin
pos_emb = torch.zeros((end, dim), device=freqs.device)
pos_emb[:, 0::2] = cos # 偶数索引放cos
pos_emb[:, 1::2] = sin # 奇数索引放sin
return pos_emb
# apply_rotary_emb_real 函数用于应用旋转位置编码(实数版本)。
def apply_rotary_emb_real(xq, xk, pos_emb):
"""使用实数张量实现旋转位置编码,避免使用复数张量
这个函数与apply_rotary_emb完全等价但使用实数张量而非复数张量
原始函数将输入张量转换为复数形式与位置编码相乘然后再转回实数形式
这个函数直接使用实数运算实现相同的旋转操作
"""
# 获取形状信息
bsz, seq_len, n_heads, head_dim = xq.shape
# 确保pos_emb形状正确
assert pos_emb.shape[0] >= seq_len, f"位置编码长度 {pos_emb.shape[0]} 小于序列长度 {seq_len}"
assert pos_emb.shape[1] == head_dim, f"位置编码维度 {pos_emb.shape[1]} 与头维度 {head_dim} 不匹配"
# 截取需要的位置编码长度
pos_emb = pos_emb[:seq_len]
# 将pos_emb调整为广播形状 [1, seq_len, 1, head_dim]
pos_emb = pos_emb.unsqueeze(0).unsqueeze(2)
# 将head_dim分成两半
half_head_dim = head_dim // 2
# 提取cos和sin值偶数索引是cos奇数索引是sin
cos = pos_emb[..., 0::2]
sin = pos_emb[..., 1::2]
# 将xq和xk重新排列以便进行旋转操作
# 原始复数版本中xq和xk被重塑为复数张量其中实部和虚部交错排列
# 在实数版本中,我们需要将偶数索引和奇数索引分开处理
# 分离偶数和奇数索引
xq_even = xq[..., 0::2] # 偶数索引,对应复数的实部
xq_odd = xq[..., 1::2] # 奇数索引,对应复数的虚部
xk_even = xk[..., 0::2]
xk_odd = xk[..., 1::2]
# 应用旋转(等价于复数乘法)
# (a + bi)(cos + sin*i) = (a*cos - b*sin) + (a*sin + b*cos)i
# 其中a是偶数索引b是奇数索引
xq_out_even = xq_even * cos - xq_odd * sin # 新的偶数索引(实部)
xq_out_odd = xq_even * sin + xq_odd * cos # 新的奇数索引(虚部)
xk_out_even = xk_even * cos - xk_odd * sin
xk_out_odd = xk_even * sin + xk_odd * cos
# 重新组合偶数和奇数索引
xq_out = torch.zeros_like(xq)
xk_out = torch.zeros_like(xk)
xq_out[..., 0::2] = xq_out_even
xq_out[..., 1::2] = xq_out_odd
xk_out[..., 0::2] = xk_out_even
xk_out[..., 1::2] = xk_out_odd
return xq_out.type_as(xq), xk_out.type_as(xk)
# repeat_kv 函数用于重复键值对。
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
class Attention(nn.Module):
def __init__(self, args: LMConfig):
super().__init__() super().__init__()
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads self.is_train = is_train
assert args.n_heads % self.n_kv_heads == 0 self.params = params
self.n_local_heads = args.n_heads self.tok_embeddings = tok_embeddings
self.n_local_kv_heads = self.n_kv_heads
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
self.attn_dropout = nn.Dropout(args.dropout)
self.resid_dropout = nn.Dropout(args.dropout)
self.dropout = args.dropout
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
mask = torch.triu(mask, diagonal=1)
self.register_buffer("mask", mask, persistent=False)
def forward(self, # 嵌入参数
x: torch.Tensor, self.knowledge_dim = params.knowledge_dim
pos_cis: torch.Tensor, self.key_dim = self.knowledge_dim // 2
db_value=None): self.to_queries = nn.Sequential(
bsz, seq_len, _ = x.shape #bsz: 批量大小, seq_len: 序列长度, _: 隐藏维度 nn.Linear(params.dim, self.knowledge_dim, bias=False),
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) #将输入张量x分别通过线性层wq, wk, wv进行变换得到查询、键和值。
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim) #将变换后的张量xq重塑为形状为(bsz, seq_len, n_local_heads, head_dim)的形状。
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xk重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xv重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
# 应用旋转位置编码(使用实数版本)
xq, xk = apply_rotary_emb_real(xq, xk, pos_cis)
# kv_cache实现 REMOVED
# if past_key_value is not None:
# xk = torch.cat([past_key_value[0], xk], dim=1)
# xv = torch.cat([past_key_value[1], xv], dim=1)
# past_kv = (xk, xv) if use_cache else None
# 重复键值对
xq, xk, xv = (
xq.transpose(1, 2),
repeat_kv(xk, self.n_rep).transpose(1, 2),
repeat_kv(xv, self.n_rep).transpose(1, 2)
) )
# 如果提供了db_value根据头的数量调整它的形状并与xv合并 ## 数据库参数
if db_value is not None: self.knowledge_num = params.knowledge_num
# 确保db_value的形状与xv兼容假设db_value形状为[B, N, H, D] self.knowledge_length = params.knowledge_length
if db_value.ndim == 4: # [B, N, H, D] self.keys = nn.Parameter(torch.randn(self.knowledge_num, self.knowledge_dim) * 0.02, requires_grad=True)
db_value = db_value.transpose(1, 2) # -> [B, H, N, D] self.product_key_topk = min(16, self.knowledge_num)
# 检查是否需要调整D维度 # 使用频率统计 - 使用register_buffer以便在GPU/CPU间正确移动
if db_value.shape[-1] != xv.shape[-1]: self.register_buffer('has_update_keys', torch.zeros(self.knowledge_num))
# 如果db_value的维度与xv不同可以添加一个投影层
# 或者在这里使用简单的调整方法
# 这里我们简单地通过均值池化或重复来调整维度
if db_value.shape[-1] > xv.shape[-1]:
# 降维
factor = db_value.shape[-1] // xv.shape[-1]
db_value = db_value.view(bsz, self.n_local_heads, seq_len, factor, xv.shape[-1])
db_value = db_value.mean(dim=3)
else:
# 升维
factor = xv.shape[-1] // db_value.shape[-1]
db_value = db_value.unsqueeze(-1).repeat(1, 1, 1, 1, factor)
db_value = db_value.view(bsz, self.n_local_heads, seq_len, xv.shape[-1])
# 将db_value与xv相加或融合 # 知识库存储 - 使用register_buffer因为这是整数索引不需要梯度
# 这里我们简单地将它们相加,但你也可以使用其他融合方法 self.register_buffer('knowledge_dataset',
xv = xv + db_value torch.randint(low=0, high=params.vocab_size, size=(self.knowledge_num, self.knowledge_length), dtype=torch.long)
)
# 使用Flash Attention # 计算step数目用于动态调整权重
if self.flash and seq_len != 1: self.step_counter = 0
dropout_p = self.dropout if self.training else 0.0
output = F.scaled_dot_product_attention(
xq, xk, xv,
attn_mask=None,
dropout_p=dropout_p,
is_causal=True
)
else:
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
scores += self.mask[:, :, :seq_len, :seq_len]
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
output = scores @ xv
output = output.transpose(1, 2).reshape(bsz, seq_len, -1) self.freeze_embedding = False
output = self.resid_dropout(self.wo(output))
return output
def intelligent_selection(self, query, all_scores, all_indices):
"""智能分层选择策略"""
if self.is_train == False:
return all_scores, all_indices
batch_size = all_scores.size(0)
device = all_scores.device
dtype = all_scores.dtype
# 对每个batch进行分层选择
enhanced_scores = all_scores.clone()
query_features = query.mean(dim=1) # [batch_size, dim]
# 预先计算所有候选条目的嵌入(批量优化)
all_candidate_indices = torch.cat([all_indices[i] for i in range(batch_size)], dim=0)
unique_indices, inverse_indices = torch.unique(all_candidate_indices, return_inverse=True)
# 批量计算唯一候选条目的嵌入
candidate_tokens = self.knowledge_dataset[unique_indices]
flat_tokens = candidate_tokens.view(-1)
flat_embeddings = self.tok_embeddings(flat_tokens)
#获取flat_tokens对应的index
pre_update_indices = unique_indices.view(-1)
pre_update_embeddings = flat_embeddings.view(
len(unique_indices), self.knowledge_length, -1
)
unique_candidate_features = flat_embeddings.view(
len(unique_indices), self.knowledge_length, -1
).mean(dim=1) # [num_unique_candidates, dim]
# 归一化候选特征(优化相似度计算)
normalized_candidates = F.normalize(unique_candidate_features, dim=-1)
normalized_queries = F.normalize(query_features, dim=-1)
# 收集所有batch的best_tokens
batch_best_tokens = []
batch_best_tokens_embeddings = []
for batch_idx in range(batch_size):
indices = all_indices[batch_idx]
# 获取当前batch候选条目对应的特征索引
start_idx = batch_idx * len(indices)
end_idx = start_idx + len(indices)
batch_inverse_indices = inverse_indices[start_idx:end_idx]
# 使用预计算的归一化特征进行优化相似度计算
batch_candidate_features = normalized_candidates[batch_inverse_indices]
query_feature = normalized_queries[batch_idx]
# 使用矩阵乘法计算余弦相似度
similarity_scores = torch.mv(batch_candidate_features, query_feature)
# 找到最大相似度分数的索引
max_similarity_idx = torch.argmax(similarity_scores)
# 获取最大相似度对应的候选条目索引
best_candidate_idx = indices[max_similarity_idx]
# 获取对应的tokens
best_tokens = self.knowledge_dataset[best_candidate_idx]
best_tokens_embeddings = self.tok_embeddings(best_tokens)
# 将当前batch的best_tokens添加到列表中
batch_best_tokens.append(best_tokens)
batch_best_tokens_embeddings.append(best_tokens_embeddings)
# 将所有batch的best_tokens堆叠成一个张量
# [batch_size, knowledge_length]
all_best_tokens = torch.stack(batch_best_tokens, dim=0)
all_best_tokens_embeddings = torch.stack(batch_best_tokens_embeddings, dim=0)
# 获取
# 使用重新计算的embeddings更新self.keys
if self.is_train:
self._update_keys_with_embeddings(pre_update_indices, pre_update_embeddings)
# 更新被修改过的key
with torch.no_grad():
self.has_update_keys[pre_update_indices] = 1
return all_best_tokens, all_best_tokens_embeddings
def _update_keys_with_embeddings(self, pre_update_indices, pre_update_embeddings):
if self.freeze_embedding:
return
# 使用pre_update_embeddings更新self.keys
with torch.no_grad():
pre_update_embeddings = pre_update_embeddings.mean(dim=1) # [337, 512]
pre_update_embeddings = self.to_queries(pre_update_embeddings)
self.keys[pre_update_indices] = pre_update_embeddings
def search_index(self,x):
batch_size, seq_len, dim = x.shape
# collapse sequence dimension by averaging
x_flat = x.mean(dim=1) # [batch_size, dim]
queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
# queries = queries.reshape(batch_size, 2, self.key_dim)
# queries = queries.permute(1, 0, 2)
# 2. 计算queries与keys的相似度
sim = torch.einsum('b d, k d -> b k', queries, self.keys)
# 3. 在两个子空间分别做top-k
scores_and_indices = sim.topk(self.product_key_topk, dim=-1)
scores, indices = scores_and_indices[0], scores_and_indices[1]
# 5. 应用智能分层选择策略
best_tokens, best_tokens_embeddings = self.intelligent_selection(x, scores, indices)
# 6. 更新1%的keys
if self.is_train:
# 获取未更新过的keys的索引
not_updated_indices = torch.where(self.has_update_keys == 0)[0]
# 如果有未更新的keys随机选择num_update_keys个进行更新
if len(not_updated_indices) > 0:
num_update_keys = int(self.knowledge_num * 0.01)
perm = torch.randperm(len(not_updated_indices))[:num_update_keys]
perm_num = perm.shape[0]
pre_update_indices = not_updated_indices[perm]
pre_update_tokens = self.knowledge_dataset[pre_update_indices]
pre_update_embeddings = self.tok_embeddings(pre_update_tokens.view(-1))
pre_update_embeddings = pre_update_embeddings.view(perm_num, self.knowledge_length, -1)
self._update_keys_with_embeddings(pre_update_indices, pre_update_embeddings)
# 更新被修改过的key
with torch.no_grad():
self.has_update_keys[pre_update_indices] = 1
else:
print("all keys are updated")
# 重置所有keys的更新状态
self.has_update_keys.zero_()
# 重新获取所有可更新的索引
not_updated_indices = torch.arange(len(self.has_update_keys), device=self.has_update_keys.device)
num_update_keys = int(self.knowledge_num * 0.01)
perm = torch.randperm(len(not_updated_indices))[:num_update_keys]
pre_update_indices = not_updated_indices[perm]
pre_update_tokens = self.knowledge_dataset[pre_update_indices]
pre_update_embeddings = self.tok_embeddings(pre_update_tokens.view(-1))
pre_update_embeddings = pre_update_embeddings.view(num_update_keys, self.knowledge_length, -1)
self._update_keys_with_embeddings(pre_update_indices, pre_update_embeddings)
# 更新被修改过的key
with torch.no_grad():
self.has_update_keys[pre_update_indices] = 1
return best_tokens, best_tokens_embeddings
class CrossAttention(nn.Module): class CrossAttention(nn.Module):
def __init__( def __init__(
@ -295,6 +284,58 @@ class CrossAttention(nn.Module):
return context return context
class Attention(nn.Module):
def __init__(self, args: LMConfig):
super().__init__()
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
assert args.n_heads % self.n_kv_heads == 0
self.n_local_heads = args.n_heads
self.n_local_kv_heads = self.n_kv_heads
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
self.attn_dropout = nn.Dropout(args.dropout)
self.resid_dropout = nn.Dropout(args.dropout)
self.dropout = args.dropout
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
mask = torch.triu(mask, diagonal=1)
self.register_buffer("mask", mask, persistent=False)
def forward(self,
x: torch.Tensor,
pos_cis: torch.Tensor):
bsz, seq_len, _ = x.shape
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
if self.flash and seq_len != 1:
dropout_p = self.dropout if self.training else 0.0
output = F.scaled_dot_product_attention(
xq, xk, xv,
attn_mask=None,
dropout_p=dropout_p,
is_causal=True
)
else:
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
scores += self.mask[:, :, :seq_len, :seq_len]
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
output = scores @ xv
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
output = self.resid_dropout(self.wo(output))
return output
class FeedForward(nn.Module): class FeedForward(nn.Module):
def __init__(self, config: LMConfig): def __init__(self, config: LMConfig):
super().__init__() super().__init__()
@ -427,170 +468,31 @@ class MOEFeedForward(nn.Module):
class MiniMindBlock(nn.Module): class MiniMindBlock(nn.Module):
def __init__(self, layer_id: int, config: LMConfig): def __init__(self, layer_id: int, config: LMConfig, knowledge_dataset: KnowledgeDataset):
super().__init__() super().__init__()
self.n_heads = config.n_heads self.n_heads = config.n_heads
self.dim = config.dim self.dim = config.dim
self.head_dim = config.dim // config.n_heads self.head_dim = config.dim // config.n_heads
self.attention = Attention(config) self.self_attention = Attention(config)
self.cross_att = CrossAttention(config) self.cross_attention = CrossAttention(config)
self.knowledge_dataset = knowledge_dataset
self.layer_id = layer_id self.layer_id = layer_id
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps) self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps) self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config) self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
# 假设num_experts是已定义的总专家数量的平方根 def forward(self, x, pos_cis):
h_attn = self.self_attention(
# 查询生成的参数
# 创建查询生成模块
# if weight_down_embed is not None:
# self.to_queries = nn.Sequential(
# nn.Linear(config.dim, self.dim_key * 2, bias=False),
# # nn.Unflatten(2, (2, self.n_heads, self.dim_key)) # 替代Rearrange
# )
# # 超参数
# self.product_key_topk = min(16, self.num_keys) # 确保不超过num_keys
# self.num_experts_per_head_topk = 1 # 最终每个头选取的专家数
def forward(self, x, db_value, pos_cis):
# import pdb;pdb.set_trace()
# db_value = None
# # 如果有weight_down_embed使用Product Key机制
# if self.weight_down_embed is not None:
# # 1. 生成queries
# batch_size, seq_len, dim = x.shape
# # collapse sequence dimension by averaging
# x_flat = x.mean(dim=1) # [batch_size, dim]
# queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
# queries = queries.reshape(batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
# queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
# # 2. 计算queries与keys的相似度
# sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
# # 3. 在两个子空间分别做top-k
# scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
# scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
# indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
# # 4. 组合两个子空间的分数和索引
# all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
# all_scores = all_scores.view(*all_scores.shape[:-2], -1)
# all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
# all_indices = all_indices.view(*all_indices.shape[:-2], -1)
# # 5. 最终top-k选择
# scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
# indices = all_indices.gather(-1, pk_indices)
# # 6. 从embedding中获取专家值
# # 从embedding中获取值
# flat_indices = indices.view(-1) # 将索引展平为一维张量
# db_values = self.weight_down_embed(flat_indices)
# # 重塑回原始形状
# db_value = db_values.view(batch_size, -1, dim)
# 注意力计算
h_attn = self.attention(
self.attention_norm(x), self.attention_norm(x),
pos_cis, pos_cis
db_value=db_value
) )
db, db_embeddings = self.knowledge_dataset.search_index(h_attn)
h_attn = self.cross_att(h_attn, db_value) h_attn = self.cross_attention(h_attn, db_embeddings)
# 残差连接
h = x + h_attn h = x + h_attn
# 前馈神经网络
out = h + self.feed_forward(self.ffn_norm(h)) out = h + self.feed_forward(self.ffn_norm(h))
return out return out
class ExtractDB(nn.Module):
def __init__(self,params):
# 修改专家数量和知识维度,确保能开方
super().__init__()
self.batch_size = None
self.dim = params.dim
self.dim_key = self.dim // 2
self.knowledge_num = params.knowledge_num # 100专家确保是完全平方数
# 将knowledge_dim设置为与head_dim相同以便在attention中直接使用
self.head_dim = params.dim // params.n_heads
self.knowledge_length = params.knowledge_length
# 使用register_buffer代替nn.Parameter避免梯度问题
# self.register_buffer('weight_down_embed', torch.randn(self.knowledge_num, self.knowledge_length) * 0.02)
self.register_buffer('weight_down_embed',torch.randint(low=0,high=6400, size=(self.knowledge_num, self.knowledge_length),dtype=torch.long))
self.num_keys = int(math.sqrt(self.knowledge_num)) if self.knowledge_num > 0 else 0
self.product_key_topk = min(16, self.num_keys)
self.keys = nn.Parameter(torch.randn(self.num_keys, 2, self.dim_key) * 0.02)
self.num_experts_per_head_topk = 1
self.to_queries = nn.Sequential(
nn.Linear(params.dim, self.dim_key * 2, bias=False),
)
def q_to_k(self,x):
# 1. 生成queries
self.batch_size, seq_len, dim = x.shape
# collapse sequence dimension by averaging
x_flat = x.mean(dim=1) # [batch_size, dim]
queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
queries = queries.reshape(self.batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
# 2. 计算queries与keys的相似度
sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
# 3. 在两个子空间分别做top-k
scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
# 4. 组合两个子空间的分数和索引
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
# 5. 最终top-k选择
scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
indices = all_indices.gather(-1, pk_indices)
flat_indices = indices.view(-1)
return flat_indices
def get_data(self, index):
# 直接从GPU获取embedding
db_values = self.weight_down_embed[index]#变成token了所以是1,后续再过emb
# db_value = db_values.view(self.batch_size,-1)
return db_values
@torch.no_grad()
def updata_value(self, k, v):#要加一个从向量返回index的过程
# 直接更新buffer上的值 (不需要梯度)
v_reshaped = v.view(v.size(0), -1)
# 确保数据类型匹配
v_reshaped = v_reshaped.to(dtype=self.weight_down_embed.dtype)
self.weight_down_embed[k] = v_reshaped
class MiniMindLM(PreTrainedModel): class MiniMindLM(PreTrainedModel):
config_class = LMConfig config_class = LMConfig
@ -601,110 +503,36 @@ class MiniMindLM(PreTrainedModel):
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim) self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.dropout = nn.Dropout(params.dropout) self.dropout = nn.Dropout(params.dropout)
# 移除旧的weight_down_embed声明 self.knowledge_dataset = KnowledgeDataset(params, self.tok_embeddings)
self.extract_db = ExtractDB(self.params) self.layers = nn.ModuleList([MiniMindBlock(l, params, self.knowledge_dataset) for l in range(self.n_layers)])
# 将self.weight_down_embed传递给每个MiniMindBlock
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
self.norm = RMSNorm(params.dim, eps=params.norm_eps) self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False) self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
self.database_output = nn.Linear(params.dim, params.knowledge_length, bias=False)
self.tok_embeddings.weight = self.output.weight self.tok_embeddings.weight = self.output.weight
self.database_output.weight = self.output.weight self.register_buffer("pos_cis",
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta),
# Calculate input dimension
input_dim = (self.params.max_seq_len-1)*self.params.n_layers
# Use a bottleneck architecture to reduce parameters
bottleneck_dim = 256 # Significantly smaller bottleneck dimension
# Factorized shared downsampling using two smaller convolutions
self.shared_downsample = nn.Sequential(
# First reduce input dimension to bottleneck
nn.Conv1d(input_dim, bottleneck_dim, kernel_size=1, padding='same'),
nn.ReLU(), # Non-linearity to improve representation capacity
# Then expand to target dimension
nn.Conv1d(bottleneck_dim, 128*8, kernel_size=1, padding='same')
)
# Specific layers for v path
self.downsample_v_specific = nn.Sequential(
nn.Conv1d(128*8, 128, kernel_size=1, padding='same'),
nn.Conv1d(128, self.params.knowledge_length, kernel_size=1, padding='same')
)
# Specific layers for q path
self.downsample_q_specific = nn.Sequential(
nn.Conv1d(128*8, 512, kernel_size=1, padding='same')
)
# 使用实数版本的位置编码,避免复数张量可能导致的段错误
self.register_buffer("pos_cis_real",
precompute_pos_cis_real(dim=params.dim // params.n_heads, theta=params.rope_theta),
persistent=False) persistent=False)
self.params = params self.OUT = CausalLMOutputWithPast()
self.freeze_embedding = False
def forward(self, def forward(self,
input_ids: Optional[torch.Tensor] = None, input_ids: Optional[torch.Tensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0, logits_to_keep: Union[int, torch.Tensor] = 0,
step: int = 0,
**args): **args):
start_pos = args.get('start_pos', 0) start_pos = args.get('start_pos', 0)
if self.freeze_embedding and step == 0:
self.tok_embeddings.weight.requires_grad = False
# 同时冻结KnowledgeDataset的嵌入更新
self.knowledge_dataset.freeze_embedding = True
print("tok_embeddings.weight.requires_grad: ", self.tok_embeddings.weight.requires_grad)
print("knowledge_dataset.freeze_embedding: ", self.knowledge_dataset.freeze_embedding)
h = self.dropout(self.tok_embeddings(input_ids)) h = self.dropout(self.tok_embeddings(input_ids))
pos_cis_real = self.pos_cis_real[start_pos:start_pos + input_ids.size(1)] pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
h_list = []
for l, layer in enumerate(self.layers): for l, layer in enumerate(self.layers):
# 禁用数据库模式,使用固定值替代数据库查询
if self.params.disable_db:
# 创建一个形状为[batch_size, n_layers, dim]的tensor所有元素值为1e-4
batch_size = h.size(0)
db_value = torch.full((batch_size, self.n_layers, self.params.dim), 1e-4,
dtype=h.dtype, device=h.device)
else:
# 正常模式,使用数据库查询
# import pdb;pdb.set_trace()
index = self.extract_db.q_to_k(h)
token_idx = self.extract_db.get_data(index) #这里是index
db_value =self.tok_embeddings(token_idx)
h = layer( h = layer(
h, db_value, pos_cis_real h, pos_cis
) )
h_list.append(h.unsqueeze(0))
h_tensor = torch.cat(h_list, dim=0).permute(1, 0, 2, 3)
# 只在非禁用数据库模式下执行数据库更新逻辑
if not self.params.disable_db:
# 使用detach()分离计算图,避免多次反向传播
h_tensor_detached = h_tensor.detach()
h_tensor_detached = h_tensor_detached.reshape(h_tensor_detached.shape[0], -1, self.params.dim)
# 数据库更新逻辑与主计算图分离
with torch.no_grad():
# Compute shared downsampling layer once
shared_features = self.shared_downsample(h_tensor_detached)
# Get features from v path - now we output embedding-dimension vectors
z_v_features = self.downsample_v_specific(shared_features)
batch_z, seq_len, dim_z = z_v_features.shape
# Reshape to batch_size * knowledge_length, dim
z_v_flat = z_v_features.reshape(-1, dim_z)
# Direct token prediction - like the main language model head
token_logits = self.database_output(z_v_flat) # [batch_z * seq_len, vocab_size]
# Get token indices directly from logits
token_indices_flat = torch.argmax(token_logits, dim=-1)
token_indices = token_indices_flat.reshape(batch_z, -1)
# Process query path as before
z_q = self.downsample_q_specific(shared_features)
z_k = self.extract_db.q_to_k(z_q)
# self.extract_db.updata_value(z_k, token_indices)
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.output(self.norm(h)[:, slice_indices, :]) logits = self.output(self.norm(h)[:, slice_indices, :])
aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward)) aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward))
@ -717,12 +545,6 @@ class MiniMindLM(PreTrainedModel):
output.aux_loss = aux_loss output.aux_loss = aux_loss
# 尝试添加其他属性(如果支持的话)
# try:
# output.hidden_states = h
# except:
# pass
return output return output
@torch.inference_mode() @torch.inference_mode()
@ -755,13 +577,14 @@ class MiniMindLM(PreTrainedModel):
return res return res
def _stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, **args): def _stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, **args):
start, first_seq = input_ids.shape[1], True start, first_seq, past_kvs = input_ids.shape[1], True, None
while input_ids.shape[1] < max_new_tokens - 1: while input_ids.shape[1] < max_new_tokens - 1:
if first_seq: if first_seq:
out, first_seq = self(input_ids, **args), False out, first_seq = self(input_ids, **args), False
else: else:
out = self(input_ids[:, -1:], start_pos=input_ids.shape[1] - 1, **args) out = self(input_ids[:, -1:],
logits = out.logits[:, -1, :] start_pos=input_ids.shape[1] - 1, **args)
logits, past_kvs = out.logits[:, -1, :], out.past_key_values
logits[:, list(set(input_ids.tolist()[0]))] /= rp logits[:, list(set(input_ids.tolist()[0]))] /= rp
logits /= (temperature + 1e-9) logits /= (temperature + 1e-9)
if top_p is not None and top_p < 1.0: if top_p is not None and top_p < 1.0:

View File

@ -1,8 +1,8 @@
#!/bin/bash #!/bin/bash
# 激活conda环境 # 激活conda环境
# source $(conda info --base)/etc/profile.d/conda.sh source $(conda info --base)/etc/profile.d/conda.sh
# conda activate ycz_accelerate conda activate mini
# 设置环境变量以帮助调试 # 设置环境变量以帮助调试
export NCCL_DEBUG=INFO export NCCL_DEBUG=INFO
@ -26,24 +26,9 @@ export PYTHONFAULTHANDLER=1
# --profile_interval 10 # --profile_interval 10
# 方法2: 使用命令行参数直接配置accelerate # 方法2: 使用命令行参数直接配置accelerate
CUDA_VISIBLE_DEVICES=0 accelerate launch \ CUDA_VISIBLE_DEVICES=0 /opt/conda/envs/mini/bin/python -m accelerate.commands.launch \
--num_processes=1 \ --num_processes=1 \
--mixed_precision=bf16 \ --mixed_precision=bf16 \
--main_process_port=29500 \ --main_process_port=29500 \
train_pretrain_accelerate.py \ train_pretrain_accelerate.py \
--epochs 3 \
--batch_size 24 \
--learning_rate 2e-4 \
--dtype bfloat16 \
--accumulation_steps 32 \
--grad_clip 1.0 \
--log_interval 100 \
--save_interval 10000 \
--dim 512 \
--n_layers 12 \
--max_seq_len 512 \
--use_flash_attn \
--profile \
--profile_interval 10\
--knowledge_num 4096 \
--knowledge_length 8

View File

@ -74,8 +74,8 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
nn.init.ones_(module.weight) nn.init.ones_(module.weight)
# 初始化位置编码相关参数 # 初始化位置编码相关参数
if hasattr(model.extract_db, 'keys'): if hasattr(model.knowledge_dataset, 'keys'):
nn.init.normal_(model.extract_db.keys, mean=0.0, std=0.02) nn.init.normal_(model.knowledge_dataset.keys, mean=0.0, std=0.02)
Logger("Default model initialization completed") Logger("Default model initialization completed")
@ -88,54 +88,52 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
if database_init_path: if database_init_path:
import json import json
import numpy as np
from sentence_transformers import SentenceTransformer
import os import os
# 聚类参数(需要提前定义用于缓存检查) # 数据库参数
knowledge_num = args.knowledge_num knowledge_num = args.knowledge_num
knowledge_length = args.knowledge_length knowledge_length = args.knowledge_length
# 检查是否使用缓存(提前检查,避免不必要的数据处理) # 检查是否使用缓存
cache_dir = os.path.dirname(args.cluster_cache_path) cache_dir = os.path.dirname(args.cluster_cache_path)
if cache_dir: if cache_dir:
os.makedirs(cache_dir, exist_ok=True) os.makedirs(cache_dir, exist_ok=True)
clustered_tensor = None processed_tensor = None
# 尝试加载缓存的聚类结果 # 尝试加载缓存的处理结果
if not args.recompute_clusters and os.path.exists(args.cluster_cache_path): if not args.recompute_clusters and os.path.exists(args.cluster_cache_path):
try: try:
Logger(f"Loading cached cluster results from {args.cluster_cache_path}") Logger(f"Loading cached processed results from {args.cluster_cache_path}")
clustered_tensor = torch.load(args.cluster_cache_path) processed_tensor = torch.load(args.cluster_cache_path)
# 验证缓存文件的形状是否可用 # 验证缓存文件的形状是否可用
cached_knowledge_num, cached_knowledge_length = clustered_tensor.shape cached_knowledge_num, cached_knowledge_length = processed_tensor.shape
if cached_knowledge_length == knowledge_length: if cached_knowledge_length == knowledge_length:
if cached_knowledge_num >= knowledge_num: if cached_knowledge_num >= knowledge_num:
# 缓存足够大,可以截取使用 # 缓存足够大,可以截取使用
clustered_tensor = clustered_tensor[:knowledge_num, :] processed_tensor = processed_tensor[:knowledge_num, :]
Logger(f"Successfully loaded cached clusters with shape {clustered_tensor.shape}") Logger(f"Successfully loaded cached data with shape {processed_tensor.shape}")
Logger(f"Truncated from cached shape ({cached_knowledge_num}, {cached_knowledge_length}) to required shape ({knowledge_num}, {knowledge_length})") Logger(f"Truncated from cached shape ({cached_knowledge_num}, {cached_knowledge_length}) to required shape ({knowledge_num}, {knowledge_length})")
Logger("Skipping database initialization and clustering - using cached results") Logger("Skipping database initialization - using cached results")
else: else:
# 缓存太小,需要重新计算 # 缓存太小,需要重新计算
Logger(f"Cached knowledge_num ({cached_knowledge_num}) < required knowledge_num ({knowledge_num}), recomputing...") Logger(f"Cached knowledge_num ({cached_knowledge_num}) < required knowledge_num ({knowledge_num}), recomputing...")
clustered_tensor = None processed_tensor = None
else: else:
# knowledge_length不匹配需要重新计算 # knowledge_length不匹配需要重新计算
Logger(f"Cached knowledge_length ({cached_knowledge_length}) != required knowledge_length ({knowledge_length}), recomputing...") Logger(f"Cached knowledge_length ({cached_knowledge_length}) != required knowledge_length ({knowledge_length}), recomputing...")
clustered_tensor = None processed_tensor = None
except Exception as e: except Exception as e:
Logger(f"Failed to load cached clusters: {e}, recomputing...") Logger(f"Failed to load cached data: {e}, recomputing...")
clustered_tensor = None processed_tensor = None
# 只有在没有有效缓存时才进行数据库初始化和聚类计算 # 只有在没有有效缓存时才进行数据库初始化和处理
if clustered_tensor is None: if processed_tensor is None:
Logger(f"Loading database initialization data from {database_init_path}") Logger(f"Loading database initialization data from {database_init_path}")
# 1. 加载JSON文件并转换为字典 # 1. 加载JSON文件
with open(database_init_path, 'r', encoding='utf-8') as f: with open(database_init_path, 'r', encoding='utf-8') as f:
database_data = json.load(f) database_data = json.load(f)
@ -147,300 +145,73 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
sorted_sentences = sorted(sentences_data, key=lambda x: x.get('importance_score', 0.0), reverse=True) sorted_sentences = sorted(sentences_data, key=lambda x: x.get('importance_score', 0.0), reverse=True)
Logger(f"Sorted sentences by importance score (highest: {sorted_sentences[0].get('importance_score', 0.0)}, lowest: {sorted_sentences[-1].get('importance_score', 0.0)})") Logger(f"Sorted sentences by importance score (highest: {sorted_sentences[0].get('importance_score', 0.0)}, lowest: {sorted_sentences[-1].get('importance_score', 0.0)})")
# 3. 下载并初始化本地嵌入模型 # 3. 处理每条数据,不进行聚类
embedding_model_name = "sentence-transformers/all-mpnet-base-v2" # 轻量级但效果好的模型 Logger("Processing individual sentences...")
embedding_model_dir = "./models/sentence_transformers/models--sentence-transformers--all-mpnet-base-v2" processed_rows = []
embedding_cache_dir = "./models/sentence_transformers/cache"
os.makedirs(embedding_cache_dir, exist_ok=True)
Logger(f"Loading embedding model: {embedding_model_name}") # 获取空token的id用于填充
try: pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
embedding_model = SentenceTransformer(embedding_model_dir, cache_folder=embedding_cache_dir)
Logger("Embedding model loaded successfully")
except Exception as e:
Logger(f"Failed to load embedding model: {e}")
Logger("Falling back to random embeddings")
embedding_model = None
# 4. 对每个corrected_sentence进行嵌入和token长度计算 # 处理所需数量的句子
Logger("Processing sentences for embeddings and token lengths...") num_to_process = min(knowledge_num, len(sorted_sentences))
# 提取所有句子 for i in range(num_to_process):
sentences = [sentence_data.get('corrected_sentence', '') for sentence_data in sorted_sentences] sentence_data = sorted_sentences[i]
sentence = sentence_data.get('corrected_sentence', '')
# 批量计算token长度 # 将句子转换为tokens
Logger("Computing token lengths...") sentence_tokens = tokenizer.encode(sentence, add_special_tokens=False)
token_lengths = []
for sentence in sentences:
tokens = tokenizer.encode(sentence, add_special_tokens=False)
token_lengths.append(len(tokens))
# 批量计算嵌入 - 大幅提升速度 # 截断或填充到knowledge_length
Logger("Computing embeddings in batches...") if len(sentence_tokens) > knowledge_length:
embeddings_list = [] # 如果超过长度,截断
batch_size = 256 # 可以根据GPU内存调整 sentence_tokens = sentence_tokens[:knowledge_length]
Logger(f"Sentence {i+1} truncated from {len(tokenizer.encode(sentence, add_special_tokens=False))} to {knowledge_length} tokens")
else:
# 如果不足长度用空token填充
original_length = len(sentence_tokens)
sentence_tokens.extend([pad_token_id] * (knowledge_length - len(sentence_tokens)))
if original_length < knowledge_length:
Logger(f"Sentence {i+1} padded from {original_length} to {knowledge_length} tokens")
if embedding_model is not None: processed_rows.append(sentence_tokens)
try:
for i in range(0, len(sentences), batch_size):
batch_sentences = sentences[i:i+batch_size]
batch_embeddings = embedding_model.encode(
batch_sentences,
convert_to_tensor=False,
show_progress_bar=True if i == 0 else False,
batch_size=batch_size
)
embeddings_list.extend(batch_embeddings)
if (i + batch_size) % (batch_size * 10) == 0: if (i + 1) % 1000 == 0:
Logger(f"Processed {min(i + batch_size, len(sentences))}/{len(sentences)} sentences") Logger(f"Processed {i + 1}/{num_to_process} sentences")
Logger("Batch embedding computation completed") # 如果句子数量不足用空token填充剩余位置
except Exception as e: while len(processed_rows) < knowledge_num:
Logger(f"Error in batch encoding: {e}") empty_tokens = [pad_token_id] * knowledge_length
Logger("Falling back to random embeddings") processed_rows.append(empty_tokens)
embeddings_list = [np.random.randn(384).astype(np.float32) for _ in sentences] if len(processed_rows) % 1000 == 0:
else: Logger(f"Added empty entry {len(processed_rows)}/{knowledge_num}")
# 使用随机嵌入
embeddings_list = [np.random.randn(384).astype(np.float32) for _ in sentences]
# 创建处理后的句子列表 Logger(f"Finished adding empty entries. Total: {len(processed_rows)}/{knowledge_num}")
processed_sentences = []
for i, (sentence_data, embedding, token_length) in enumerate(zip(sorted_sentences, embeddings_list, token_lengths)):
processed_sentences.append({
'sentence': sentence_data.get('corrected_sentence', ''),
'importance_score': sentence_data.get('importance_score', 0.0),
'token_length': token_length,
'embedding': embedding, # Convert numpy array to list
'original_index': i
})
# 转换为numpy数组以便后续处理
embeddings_array = np.array(embeddings_list)
token_lengths_array = np.array(token_lengths)
Logger(f"Embedding processing completed:")
Logger(f" - Total sentences: {len(processed_sentences)}")
Logger(f" - Embedding shape: {embeddings_array.shape}")
Logger(f" - Average token length: {np.mean(token_lengths_array):.2f}")
Logger(f" - Token length range: {np.min(token_lengths_array)} - {np.max(token_lengths_array)}")
# 聚类参数定义
min_tokens = int(0.85 * knowledge_length)
max_tokens = int(0.95 * knowledge_length)
# 优化1: 预计算所有嵌入的相似度矩阵(如果数据量不太大)
if len(processed_sentences) <= 10000: # 只有在数据量不太大时才预计算
Logger("Pre-computing similarity matrix for faster clustering...")
embeddings_matrix = np.array([s['embedding'] for s in processed_sentences])
similarity_matrix = cosine_similarity(embeddings_matrix)
Logger(f"Similarity matrix computed: {similarity_matrix.shape}")
else:
similarity_matrix = None
embeddings_matrix = np.array([s['embedding'] for s in processed_sentences])
clustered_rows = []
remaining_indices = list(range(len(processed_sentences))) # 使用索引而不是对象
Logger(f"Target: {knowledge_num} clusters, each with {min_tokens}-{max_tokens} tokens")
# 选择聚类算法
if args.fast_clustering and len(processed_sentences) > 5000:
Logger("Using ultra-fast approximate clustering algorithm...")
# 超快速聚类:随机采样 + 批量处理
import random
random.seed(42) # 确保可重现性
# 按重要性分层采样
high_importance = [i for i, s in enumerate(processed_sentences) if s['importance_score'] > 0.7]
medium_importance = [i for i, s in enumerate(processed_sentences) if 0.3 <= s['importance_score'] <= 0.7]
low_importance = [i for i, s in enumerate(processed_sentences) if s['importance_score'] < 0.3]
Logger(f"Importance distribution: High={len(high_importance)}, Medium={len(medium_importance)}, Low={len(low_importance)}")
for cluster_idx in tqdm(range(knowledge_num)):
# 分层选择种子:优先选择高重要性句子
if high_importance:
seed_pool = high_importance
elif medium_importance:
seed_pool = medium_importance
else:
seed_pool = low_importance if low_importance else list(range(len(processed_sentences)))
if not seed_pool:
break
# 随机选择种子(在同一重要性层级内)
seed_global_idx = random.choice(seed_pool)
seed_sentence = processed_sentences[seed_global_idx]
# 从所有池中移除种子
for pool in [high_importance, medium_importance, low_importance]:
if seed_global_idx in pool:
pool.remove(seed_global_idx)
current_cluster_indices = [seed_global_idx]
current_tokens = seed_sentence['token_length']
if current_tokens < max_tokens:
# 快速选择:只从附近的句子中随机选择
all_remaining = high_importance + medium_importance + low_importance
if all_remaining:
# 随机采样候选句子(而不是计算所有相似度)
sample_size = min(2000, len(all_remaining))
candidates = random.sample(all_remaining, sample_size)
# 简单按token长度和重要性选择
for candidate_idx in candidates:
candidate = processed_sentences[candidate_idx]
candidate_tokens = candidate['token_length']
if current_tokens + candidate_tokens + 1 <= max_tokens:
current_cluster_indices.append(candidate_idx)
current_tokens += candidate_tokens + 1
# 从池中移除
for pool in [high_importance, medium_importance, low_importance]:
if candidate_idx in pool:
pool.remove(candidate_idx)
break
if current_tokens >= min_tokens:
break
# 生成聚类文本
cluster_sentences = [processed_sentences[idx]['sentence'] for idx in current_cluster_indices]
cluster_text = '\n '.join(cluster_sentences)
# 转换为tokens
cluster_tokens = tokenizer.encode(cluster_text, add_special_tokens=False)
if len(cluster_tokens) > knowledge_length:
cluster_tokens = cluster_tokens[:knowledge_length]
else:
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
cluster_tokens.extend([pad_token_id] * (knowledge_length - len(cluster_tokens)))
clustered_rows.append(cluster_tokens)
if (cluster_idx + 1) % 1000 == 0:
total_remaining = len(high_importance) + len(medium_importance) + len(low_importance)
Logger(f"Fast clustering: {cluster_idx + 1}/{knowledge_num} clusters, {total_remaining} sentences remaining")
else:
# 原始优化算法(适用于中等规模数据集)
# 优化2: 批量处理和更高效的数据结构
for cluster_idx in tqdm(range(knowledge_num)):
if not remaining_indices:
Logger(f"No more sentences available. Created {cluster_idx} clusters.")
break
# 2.1 选择importance_score最高的句子作为种子
remaining_sentences_subset = [processed_sentences[i] for i in remaining_indices]
seed_idx_in_subset = max(range(len(remaining_sentences_subset)),
key=lambda i: remaining_sentences_subset[i]['importance_score'])
seed_global_idx = remaining_indices[seed_idx_in_subset]
seed_sentence = processed_sentences[seed_global_idx]
# 从剩余索引中移除种子
remaining_indices.remove(seed_global_idx)
# 当前聚类
current_cluster_indices = [seed_global_idx]
current_tokens = seed_sentence['token_length']
if current_tokens >= max_tokens:
# 如果种子句子已经超过最大token数直接作为一个聚类
cluster_text = seed_sentence['sentence']
else:
# 2.2 优化的相似度计算和选择
if remaining_indices:
if similarity_matrix is not None:
# 使用预计算的相似度矩阵
similarities = similarity_matrix[seed_global_idx][remaining_indices]
else:
# 动态计算相似度(批量)
seed_embedding = embeddings_matrix[seed_global_idx:seed_global_idx+1]
remaining_embeddings = embeddings_matrix[remaining_indices]
similarities = cosine_similarity(seed_embedding, remaining_embeddings)[0]
# 创建(相似度, 原始索引, 在remaining_indices中的位置)的元组列表
similarity_tuples = [(similarities[i], remaining_indices[i], i)
for i in range(len(remaining_indices))]
# 按相似度排序(降序)
similarity_tuples.sort(key=lambda x: x[0], reverse=True)
# 优化3: 贪心选择,但限制搜索范围以提高速度
max_candidates = min(len(similarity_tuples), 500) # 只考虑前500个最相似的句子
selected_indices_in_remaining = []
for sim_score, global_idx, pos_in_remaining in similarity_tuples[:max_candidates]:
candidate = processed_sentences[global_idx]
candidate_tokens = candidate['token_length']
if current_tokens + candidate_tokens + 1 <= max_tokens: # +1 for newline
current_cluster_indices.append(global_idx)
selected_indices_in_remaining.append(pos_in_remaining)
current_tokens += candidate_tokens + 1
if current_tokens >= min_tokens:
break
# 批量移除选中的句子(从后往前移除以避免索引问题)
for pos in sorted(selected_indices_in_remaining, reverse=True):
remaining_indices.pop(pos)
# 拼接句子
cluster_sentences = [processed_sentences[idx]['sentence'] for idx in current_cluster_indices]
cluster_text = '\n'.join(cluster_sentences)
# 将聚类文本转换为token
cluster_tokens = tokenizer.encode(cluster_text, add_special_tokens=False)
# 截断或填充到knowledge_length
if len(cluster_tokens) > knowledge_length:
cluster_tokens = cluster_tokens[:knowledge_length]
else:
# 用pad_token_id填充
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
cluster_tokens.extend([pad_token_id] * (knowledge_length - len(cluster_tokens)))
clustered_rows.append(cluster_tokens)
# 优化4: 减少日志频率
if (cluster_idx + 1) % 500 == 0:
Logger(f"Created {cluster_idx + 1}/{knowledge_num} clusters, {len(remaining_indices)} sentences remaining")
# 如果聚类数量不足用随机token填充
while len(clustered_rows) < knowledge_num:
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
random_tokens = [pad_token_id] * knowledge_length
clustered_rows.append(random_tokens)
# 转换为tensor # 转换为tensor
clustered_tensor = torch.tensor(clustered_rows, dtype=torch.long) processed_tensor = torch.tensor(processed_rows, dtype=torch.long)
Logger(f"Clustering completed:") Logger(f"Data processing completed:")
Logger(f" - Created {len(clustered_rows)} clusters") Logger(f" - Processed {num_to_process} sentences")
Logger(f" - Cluster shape: {clustered_tensor.shape}") Logger(f" - Added {knowledge_num - num_to_process} empty entries")
Logger(f" - Final shape: {processed_tensor.shape}")
Logger(f" - Expected shape: ({knowledge_num}, {knowledge_length})") Logger(f" - Expected shape: ({knowledge_num}, {knowledge_length})")
# 保存聚类结果到缓存文件 # 保存处理结果到缓存文件
try: try:
torch.save(clustered_tensor, args.cluster_cache_path) torch.save(processed_tensor, args.cluster_cache_path)
Logger(f"Cluster results saved to {args.cluster_cache_path}") Logger(f"Processed results saved to {args.cluster_cache_path}")
except Exception as e: except Exception as e:
Logger(f"Failed to save cluster results: {e}") Logger(f"Failed to save processed results: {e}")
# 3. 初始化模型的weight_down_embed # 4. 初始化模型的knowledge_dataset
if hasattr(model, 'extract_db') and hasattr(model.extract_db, 'weight_down_embed'): if hasattr(model, 'knowledge_dataset') and hasattr(model.knowledge_dataset, 'knowledge_dataset'):
model.extract_db.weight_down_embed.data.copy_(clustered_tensor) model.knowledge_dataset.knowledge_dataset.data.copy_(processed_tensor)
Logger("Successfully initialized model.extract_db.weight_down_embed with clustered data") Logger("Successfully initialized model.knowledge_dataset.knowledge_dataset with processed data")
else: else:
Logger("Warning: Could not find model.extract_db.weight_down_embed to initialize") Logger("Warning: Could not find model.knowledge_dataset.knowledge_dataset to initialize")
# 存储为全局变量作为备选 # 存储为全局变量作为备选
globals()['clustered_database'] = clustered_tensor globals()['processed_database'] = processed_tensor
Logger(f"Database embeddings and sentences stored in model") Logger(f"Database embeddings and sentences stored in model")
@ -453,6 +224,7 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
total_steps_in_epoch = len(train_loader) total_steps_in_epoch = len(train_loader)
total_training_steps = args.epochs * total_steps_in_epoch total_training_steps = args.epochs * total_steps_in_epoch
moe_path = '_moe' if args.use_moe else '' moe_path = '_moe' if args.use_moe else ''
best_loss = float('10000')
# 添加CUDA事件来分析性能 (只在主进程进行) # 添加CUDA事件来分析性能 (只在主进程进行)
if args.profile and accelerator.is_main_process: if args.profile and accelerator.is_main_process:
@ -516,7 +288,12 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
# 前向传播 # 前向传播
with ctx: with ctx:
res = model(X) if step == 0 and args.embedding_epoch == epoch:
# 需要设置原始模型的freeze_embedding属性而不是包装后的模型
unwrapped_model = accelerator.unwrap_model(model)
unwrapped_model.freeze_embedding = True
Logger(f"Set freeze_embedding=True for epoch {epoch}, step {step}", accelerator)
res = model(X, step=step)
loss = loss_fct( loss = loss_fct(
res.logits.view(-1, res.logits.size(-1)), res.logits.view(-1, res.logits.size(-1)),
Y.view(-1) Y.view(-1)
@ -640,7 +417,9 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
wandb.log(log_dict) wandb.log(log_dict)
# 保存模型 (只在主进程进行) # 保存模型 (只在主进程进行)
if (step + 1) % args.save_interval == 0 and accelerator.is_main_process: loss_total = loss.item() * args.accumulation_steps
if best_loss > loss_total and accelerator.is_main_process:
best_loss = loss_total
# 使用函数开始处定义的moe_path变量 # 使用函数开始处定义的moe_path变量
ckp = f'{args.save_dir}/pretrain_{args.dim}{moe_path}.pth' ckp = f'{args.save_dir}/pretrain_{args.dim}{moe_path}.pth'
@ -659,21 +438,22 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
def main(): def main():
parser = argparse.ArgumentParser(description="MiniMind Pretraining with Accelerate") parser = argparse.ArgumentParser(description="MiniMind Pretraining with Accelerate")
parser.add_argument("--out_dir", type=str, default="out") parser.add_argument("--out_dir", type=str, default="out")
parser.add_argument("--epochs", type=int, default=3) parser.add_argument("--epochs", type=int, default=4)
parser.add_argument("--batch_size", type=int, default=24) parser.add_argument("--embedding_epoch", type=int, default=2, help="embedding训练的epoch数")
parser.add_argument("--batch_size", type=int, default=64)
parser.add_argument("--learning_rate", type=float, default=2e-4) parser.add_argument("--learning_rate", type=float, default=2e-4)
parser.add_argument("--dtype", type=str, default="bfloat16") parser.add_argument("--dtype", type=str, default="bfloat16")
parser.add_argument("--use_wandb", default=True, action="store_true") parser.add_argument("--use_wandb", default=True, action="store_true")
parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain") parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain")
parser.add_argument("--num_workers", type=int, default=48) parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--accumulation_steps", type=int, default=32) parser.add_argument("--accumulation_steps", type=int, default=32)
parser.add_argument("--grad_clip", type=float, default=1.0) parser.add_argument("--grad_clip", type=float, default=1.0)
parser.add_argument("--warmup_iters", type=int, default=0) parser.add_argument("--warmup_iters", type=int, default=0)
parser.add_argument("--log_interval", type=int, default=100) parser.add_argument("--log_interval", type=int, default=100)
parser.add_argument("--save_interval", type=int, default=10000) parser.add_argument("--save_interval", type=int, default=10000)
parser.add_argument('--dim', default=1024, type=int) parser.add_argument('--dim', default=512, type=int)
parser.add_argument('--n_layers', default=32, type=int) parser.add_argument('--n_layers', default=8, type=int)
parser.add_argument('--max_seq_len', default=1024, type=int) parser.add_argument('--max_seq_len', default=512, type=int)
parser.add_argument('--use_moe', default=False, type=bool) parser.add_argument('--use_moe', default=False, type=bool)
parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能使用固定值1e-4替代") parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能使用固定值1e-4替代")
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl") parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl")
@ -681,11 +461,11 @@ def main():
parser.add_argument("--profile", action="store_true", default=True, help="启用性能分析") parser.add_argument("--profile", action="store_true", default=True, help="启用性能分析")
parser.add_argument("--profile_interval", type=int, default=10, help="性能分析打印间隔(步数)") parser.add_argument("--profile_interval", type=int, default=10, help="性能分析打印间隔(步数)")
parser.add_argument("--use_flash_attn", action="store_true", default=True, help="启用FlashAttention") parser.add_argument("--use_flash_attn", action="store_true", default=True, help="启用FlashAttention")
parser.add_argument("--knowledge_num", type=int, default=65536,help="知识库的数据数目") parser.add_argument("--knowledge_num", type=int, default=8192,help="知识库的数据数目")
parser.add_argument("--knowledge_length", type=int, default=64,help="知识库的句子长度") parser.add_argument("--knowledge_length", type=int, default=32,help="知识库的句子长度")
parser.add_argument("--database_init_path", type=str, default="./dataset/database_init.json", help="数据库初始化路径") parser.add_argument("--database_init_path", type=str, default="./dataset/database_init.json", help="数据库初始化路径")
parser.add_argument("--fast_clustering", action="store_true", default=True, help="使用快速近似聚类算法(适用于大数据集)") parser.add_argument("--fast_clustering", action="store_true", default=True, help="使用快速近似聚类算法(适用于大数据集)")
parser.add_argument("--cluster_cache_path", type=str, default="./cache/cluster_tokens.pt", help="聚类结果缓存文件路径") parser.add_argument("--cluster_cache_path", type=str, default="./cache/cluster_tokens_single.pt", help="聚类结果缓存文件路径")
parser.add_argument("--recompute_clusters", action="store_true", default=False, help="强制重新计算聚类,忽略缓存文件") parser.add_argument("--recompute_clusters", action="store_true", default=False, help="强制重新计算聚类,忽略缓存文件")
args = parser.parse_args() args = parser.parse_args()
@ -724,7 +504,8 @@ def main():
disable_db=args.disable_db, disable_db=args.disable_db,
flash_attn=args.use_flash_attn, flash_attn=args.use_flash_attn,
knowledge_num=args.knowledge_num, knowledge_num=args.knowledge_num,
knowledge_length=args.knowledge_length knowledge_length=args.knowledge_length,
embeddings_epoch=args.embedding_epoch
) )
######################################################### #########################################################