Compare commits
3 Commits
Author | SHA1 | Date | |
---|---|---|---|
770c34f0e3 | |||
1678e739b6 | |||
000e17a93f |
2
.gitignore
vendored
2
.gitignore
vendored
@ -7,3 +7,5 @@ models/sentence_transformers/
|
|||||||
models/sentence_transformers_cache/
|
models/sentence_transformers_cache/
|
||||||
**/*.pyc
|
**/*.pyc
|
||||||
qwen2-1.7B/
|
qwen2-1.7B/
|
||||||
|
images/
|
||||||
|
cache/
|
102
.vscode/launch.json
vendored
Normal file
102
.vscode/launch.json
vendored
Normal file
@ -0,0 +1,102 @@
|
|||||||
|
{
|
||||||
|
"version": "0.2.0",
|
||||||
|
"configurations": [
|
||||||
|
{
|
||||||
|
"name": "Debug Train Pretrain Accelerate",
|
||||||
|
"type": "python",
|
||||||
|
"request": "launch",
|
||||||
|
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
|
||||||
|
"console": "integratedTerminal",
|
||||||
|
"python": "/opt/conda/envs/mini/bin/python",
|
||||||
|
"cwd": "${workspaceFolder}",
|
||||||
|
"env": {
|
||||||
|
"PYTHONPATH": "${workspaceFolder}",
|
||||||
|
"CUDA_VISIBLE_DEVICES": "0"
|
||||||
|
},
|
||||||
|
"justMyCode": false,
|
||||||
|
"stopOnEntry": false,
|
||||||
|
"redirectOutput": true
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "Debug Train Pretrain Accelerate (Multi-GPU)",
|
||||||
|
"type": "python",
|
||||||
|
"request": "launch",
|
||||||
|
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
|
||||||
|
"console": "integratedTerminal",
|
||||||
|
"python": "/opt/conda/envs/mini/bin/python",
|
||||||
|
"args": [
|
||||||
|
"--hidden_size", "512",
|
||||||
|
"--max_seq_len", "512",
|
||||||
|
"--n_layers", "8",
|
||||||
|
"--batch_size", "8",
|
||||||
|
"--epochs", "1"
|
||||||
|
],
|
||||||
|
"cwd": "${workspaceFolder}",
|
||||||
|
"env": {
|
||||||
|
"PYTHONPATH": "${workspaceFolder}",
|
||||||
|
"CUDA_VISIBLE_DEVICES": "0,1"
|
||||||
|
},
|
||||||
|
"justMyCode": false,
|
||||||
|
"stopOnEntry": false,
|
||||||
|
"redirectOutput": true
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "Debug Train Pretrain Accelerate (Small Test)",
|
||||||
|
"type": "python",
|
||||||
|
"request": "launch",
|
||||||
|
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
|
||||||
|
"console": "integratedTerminal",
|
||||||
|
"python": "/opt/conda/envs/mini/bin/python",
|
||||||
|
"args": [
|
||||||
|
"--hidden_size", "512",
|
||||||
|
"--max_seq_len", "512",
|
||||||
|
"--n_layers", "8",
|
||||||
|
"--batch_size", "2",
|
||||||
|
"--epochs", "1",
|
||||||
|
"--log_interval", "10",
|
||||||
|
"--save_interval", "100",
|
||||||
|
"--accumulation_steps", "4"
|
||||||
|
],
|
||||||
|
"cwd": "${workspaceFolder}",
|
||||||
|
"env": {
|
||||||
|
"PYTHONPATH": "${workspaceFolder}",
|
||||||
|
"CUDA_VISIBLE_DEVICES": "0",
|
||||||
|
"WANDB_MODE": "offline"
|
||||||
|
},
|
||||||
|
"justMyCode": false,
|
||||||
|
"stopOnEntry": false,
|
||||||
|
"redirectOutput": true
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "Debug ExtractDB Comparison",
|
||||||
|
"type": "python",
|
||||||
|
"request": "launch",
|
||||||
|
"program": "${workspaceFolder}/train_pretrain_accelerate.py",
|
||||||
|
"console": "integratedTerminal",
|
||||||
|
"python": "/opt/conda/envs/mini/bin/python",
|
||||||
|
"args": [
|
||||||
|
"--hidden_size", "512",
|
||||||
|
"--max_seq_len", "256",
|
||||||
|
"--n_layers", "4",
|
||||||
|
"--batch_size", "2",
|
||||||
|
"--epochs", "1",
|
||||||
|
"--log_interval", "10",
|
||||||
|
"--save_interval", "200",
|
||||||
|
"--accumulation_steps", "2",
|
||||||
|
"--comparison_mode",
|
||||||
|
"--knowledge_num", "256",
|
||||||
|
"--knowledge_length", "64",
|
||||||
|
"--comparison_mode"
|
||||||
|
],
|
||||||
|
"cwd": "${workspaceFolder}",
|
||||||
|
"env": {
|
||||||
|
"PYTHONPATH": "${workspaceFolder}",
|
||||||
|
"CUDA_VISIBLE_DEVICES": "0",
|
||||||
|
"WANDB_MODE": "offline"
|
||||||
|
},
|
||||||
|
"justMyCode": false,
|
||||||
|
"stopOnEntry": false,
|
||||||
|
"redirectOutput": true
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
18
.vscode/settings.json
vendored
Normal file
18
.vscode/settings.json
vendored
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
{
|
||||||
|
"python.pythonPath": "/home/iomgaa/miniconda3/envs/accelerate/bin/python",
|
||||||
|
"python.defaultInterpreterPath": "/home/iomgaa/miniconda3/envs/accelerate/bin/python",
|
||||||
|
"python.terminal.activateEnvironment": true,
|
||||||
|
"python.terminal.activateEnvInCurrentTerminal": true,
|
||||||
|
"python.linting.enabled": true,
|
||||||
|
"python.linting.pylintEnabled": false,
|
||||||
|
"python.linting.flake8Enabled": true,
|
||||||
|
"python.formatting.provider": "black",
|
||||||
|
"python.analysis.autoImportCompletions": true,
|
||||||
|
"python.analysis.typeCheckingMode": "off",
|
||||||
|
"files.exclude": {
|
||||||
|
"**/__pycache__": true,
|
||||||
|
"**/*.pyc": true,
|
||||||
|
"**/.git": false,
|
||||||
|
"**/wandb": false
|
||||||
|
}
|
||||||
|
}
|
@ -19,6 +19,7 @@ class LMConfig(PretrainedConfig):
|
|||||||
rope_theta: int = 1e6,
|
rope_theta: int = 1e6,
|
||||||
dropout: float = 0.0,
|
dropout: float = 0.0,
|
||||||
flash_attn: bool = True,
|
flash_attn: bool = True,
|
||||||
|
embeddings_epoch: int = 2,
|
||||||
####################################################
|
####################################################
|
||||||
# DB related configurations
|
# DB related configurations
|
||||||
####################################################
|
####################################################
|
||||||
@ -39,6 +40,7 @@ class LMConfig(PretrainedConfig):
|
|||||||
####################################################
|
####################################################
|
||||||
knowledge_num: int = 64*64,
|
knowledge_num: int = 64*64,
|
||||||
knowledge_length: int = 8,
|
knowledge_length: int = 8,
|
||||||
|
knowledge_dim: int = 128,
|
||||||
**kwargs,
|
**kwargs,
|
||||||
):
|
):
|
||||||
self.dim = dim
|
self.dim = dim
|
||||||
@ -53,6 +55,7 @@ class LMConfig(PretrainedConfig):
|
|||||||
self.rope_theta = rope_theta
|
self.rope_theta = rope_theta
|
||||||
self.dropout = dropout
|
self.dropout = dropout
|
||||||
self.flash_attn = flash_attn
|
self.flash_attn = flash_attn
|
||||||
|
self.embeddings_epoch = embeddings_epoch
|
||||||
####################################################
|
####################################################
|
||||||
# DB related configurations
|
# DB related configurations
|
||||||
####################################################
|
####################################################
|
||||||
@ -72,4 +75,5 @@ class LMConfig(PretrainedConfig):
|
|||||||
####################################################
|
####################################################
|
||||||
self.knowledge_num = knowledge_num
|
self.knowledge_num = knowledge_num
|
||||||
self.knowledge_length = knowledge_length
|
self.knowledge_length = knowledge_length
|
||||||
|
self.knowledge_dim = knowledge_dim
|
||||||
super().__init__(**kwargs)
|
super().__init__(**kwargs)
|
||||||
|
697
model/model.py
697
model/model.py
@ -11,14 +11,9 @@ import torch.nn.functional as F
|
|||||||
from torch import nn
|
from torch import nn
|
||||||
from transformers import PreTrainedModel
|
from transformers import PreTrainedModel
|
||||||
from transformers.modeling_outputs import CausalLMOutputWithPast
|
from transformers.modeling_outputs import CausalLMOutputWithPast
|
||||||
from torch import nn, einsum
|
|
||||||
from einops import rearrange, repeat
|
|
||||||
|
|
||||||
def exists(val):
|
|
||||||
return val is not None
|
|
||||||
|
|
||||||
|
|
||||||
# RMSNorm 类定义了一个用于归一化输入张量的模块。
|
|
||||||
class RMSNorm(torch.nn.Module):
|
class RMSNorm(torch.nn.Module):
|
||||||
def __init__(self, dim: int, eps: float = 1e-6):
|
def __init__(self, dim: int, eps: float = 1e-6):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -31,7 +26,7 @@ class RMSNorm(torch.nn.Module):
|
|||||||
def forward(self, x):
|
def forward(self, x):
|
||||||
return self.weight * self._norm(x.float()).type_as(x)
|
return self.weight * self._norm(x.float()).type_as(x)
|
||||||
|
|
||||||
# precompute_pos_cis 函数用于预计算位置编码(复数版本)。
|
|
||||||
def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
||||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
||||||
t = torch.arange(end, device=freqs.device) # type: ignore
|
t = torch.arange(end, device=freqs.device) # type: ignore
|
||||||
@ -39,7 +34,7 @@ def precompute_pos_cis(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
|||||||
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
pos_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
|
||||||
return pos_cis
|
return pos_cis
|
||||||
|
|
||||||
# apply_rotary_emb 函数用于应用旋转位置编码(复数版本)。
|
|
||||||
def apply_rotary_emb(xq, xk, pos_cis):
|
def apply_rotary_emb(xq, xk, pos_cis):
|
||||||
def unite_shape(pos_cis, x):
|
def unite_shape(pos_cis, x):
|
||||||
ndim = x.ndim
|
ndim = x.ndim
|
||||||
@ -55,200 +50,194 @@ def apply_rotary_emb(xq, xk, pos_cis):
|
|||||||
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
|
xk_out = torch.view_as_real(xk_ * pos_cis).flatten(3)
|
||||||
return xq_out.type_as(xq), xk_out.type_as(xk)
|
return xq_out.type_as(xq), xk_out.type_as(xk)
|
||||||
|
|
||||||
# precompute_pos_cis_real 函数用于预计算位置编码(实数版本)。
|
class KnowledgeDataset(nn.Module):
|
||||||
def precompute_pos_cis_real(dim: int, end: int = int(32 * 1024), theta: float = 1e6):
|
def __init__(self, params, tok_embeddings, is_train=True):
|
||||||
"""使用实数张量实现位置编码,避免使用复数张量
|
|
||||||
|
|
||||||
这个函数与precompute_pos_cis完全等价,但使用实数张量而非复数张量。
|
|
||||||
原始函数生成形状为[seq_len, dim//2]的复数张量,其中实部全为1,虚部为旋转角度。
|
|
||||||
这个函数生成形状为[seq_len, dim]的实数张量,其中偶数索引是cos(角度),奇数索引是sin(角度)。
|
|
||||||
"""
|
|
||||||
# 确保dim是偶数
|
|
||||||
if dim % 2 != 0:
|
|
||||||
raise ValueError(f"维度必须是偶数,但得到了 {dim}")
|
|
||||||
|
|
||||||
# 复制原始函数的频率计算逻辑
|
|
||||||
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
|
|
||||||
t = torch.arange(end, device=freqs.device)
|
|
||||||
freqs = torch.outer(t, freqs).float()
|
|
||||||
|
|
||||||
# 计算cos和sin值
|
|
||||||
# 在复数版本中,pos_cis = torch.polar(torch.ones_like(freqs), freqs)
|
|
||||||
# 等价于 cos(freqs) + i*sin(freqs)
|
|
||||||
cos = torch.cos(freqs)
|
|
||||||
sin = torch.sin(freqs)
|
|
||||||
|
|
||||||
# 创建实数张量,交错排列cos和sin
|
|
||||||
pos_emb = torch.zeros((end, dim), device=freqs.device)
|
|
||||||
pos_emb[:, 0::2] = cos # 偶数索引放cos
|
|
||||||
pos_emb[:, 1::2] = sin # 奇数索引放sin
|
|
||||||
|
|
||||||
return pos_emb
|
|
||||||
|
|
||||||
# apply_rotary_emb_real 函数用于应用旋转位置编码(实数版本)。
|
|
||||||
def apply_rotary_emb_real(xq, xk, pos_emb):
|
|
||||||
"""使用实数张量实现旋转位置编码,避免使用复数张量
|
|
||||||
|
|
||||||
这个函数与apply_rotary_emb完全等价,但使用实数张量而非复数张量。
|
|
||||||
原始函数将输入张量转换为复数形式,与位置编码相乘,然后再转回实数形式。
|
|
||||||
这个函数直接使用实数运算实现相同的旋转操作。
|
|
||||||
"""
|
|
||||||
# 获取形状信息
|
|
||||||
bsz, seq_len, n_heads, head_dim = xq.shape
|
|
||||||
|
|
||||||
# 确保pos_emb形状正确
|
|
||||||
assert pos_emb.shape[0] >= seq_len, f"位置编码长度 {pos_emb.shape[0]} 小于序列长度 {seq_len}"
|
|
||||||
assert pos_emb.shape[1] == head_dim, f"位置编码维度 {pos_emb.shape[1]} 与头维度 {head_dim} 不匹配"
|
|
||||||
|
|
||||||
# 截取需要的位置编码长度
|
|
||||||
pos_emb = pos_emb[:seq_len]
|
|
||||||
|
|
||||||
# 将pos_emb调整为广播形状 [1, seq_len, 1, head_dim]
|
|
||||||
pos_emb = pos_emb.unsqueeze(0).unsqueeze(2)
|
|
||||||
|
|
||||||
# 将head_dim分成两半
|
|
||||||
half_head_dim = head_dim // 2
|
|
||||||
|
|
||||||
# 提取cos和sin值(偶数索引是cos,奇数索引是sin)
|
|
||||||
cos = pos_emb[..., 0::2]
|
|
||||||
sin = pos_emb[..., 1::2]
|
|
||||||
|
|
||||||
# 将xq和xk重新排列,以便进行旋转操作
|
|
||||||
# 原始复数版本中,xq和xk被重塑为复数张量,其中实部和虚部交错排列
|
|
||||||
# 在实数版本中,我们需要将偶数索引和奇数索引分开处理
|
|
||||||
|
|
||||||
# 分离偶数和奇数索引
|
|
||||||
xq_even = xq[..., 0::2] # 偶数索引,对应复数的实部
|
|
||||||
xq_odd = xq[..., 1::2] # 奇数索引,对应复数的虚部
|
|
||||||
xk_even = xk[..., 0::2]
|
|
||||||
xk_odd = xk[..., 1::2]
|
|
||||||
|
|
||||||
# 应用旋转(等价于复数乘法)
|
|
||||||
# (a + bi)(cos + sin*i) = (a*cos - b*sin) + (a*sin + b*cos)i
|
|
||||||
# 其中a是偶数索引,b是奇数索引
|
|
||||||
xq_out_even = xq_even * cos - xq_odd * sin # 新的偶数索引(实部)
|
|
||||||
xq_out_odd = xq_even * sin + xq_odd * cos # 新的奇数索引(虚部)
|
|
||||||
xk_out_even = xk_even * cos - xk_odd * sin
|
|
||||||
xk_out_odd = xk_even * sin + xk_odd * cos
|
|
||||||
|
|
||||||
# 重新组合偶数和奇数索引
|
|
||||||
xq_out = torch.zeros_like(xq)
|
|
||||||
xk_out = torch.zeros_like(xk)
|
|
||||||
xq_out[..., 0::2] = xq_out_even
|
|
||||||
xq_out[..., 1::2] = xq_out_odd
|
|
||||||
xk_out[..., 0::2] = xk_out_even
|
|
||||||
xk_out[..., 1::2] = xk_out_odd
|
|
||||||
|
|
||||||
return xq_out.type_as(xq), xk_out.type_as(xk)
|
|
||||||
|
|
||||||
# repeat_kv 函数用于重复键值对。
|
|
||||||
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
||||||
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
|
|
||||||
bs, slen, n_kv_heads, head_dim = x.shape
|
|
||||||
if n_rep == 1:
|
|
||||||
return x
|
|
||||||
return (
|
|
||||||
x[:, :, :, None, :]
|
|
||||||
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
|
|
||||||
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class Attention(nn.Module):
|
|
||||||
def __init__(self, args: LMConfig):
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
self.is_train = is_train
|
||||||
assert args.n_heads % self.n_kv_heads == 0
|
self.params = params
|
||||||
self.n_local_heads = args.n_heads
|
self.tok_embeddings = tok_embeddings
|
||||||
self.n_local_kv_heads = self.n_kv_heads
|
|
||||||
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
|
||||||
self.head_dim = args.dim // args.n_heads
|
|
||||||
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
|
|
||||||
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
|
||||||
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
|
||||||
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
|
|
||||||
self.attn_dropout = nn.Dropout(args.dropout)
|
|
||||||
self.resid_dropout = nn.Dropout(args.dropout)
|
|
||||||
self.dropout = args.dropout
|
|
||||||
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
|
|
||||||
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
|
||||||
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
|
|
||||||
mask = torch.triu(mask, diagonal=1)
|
|
||||||
self.register_buffer("mask", mask, persistent=False)
|
|
||||||
|
|
||||||
def forward(self,
|
# 嵌入参数
|
||||||
x: torch.Tensor,
|
self.knowledge_dim = params.knowledge_dim
|
||||||
pos_cis: torch.Tensor,
|
self.key_dim = self.knowledge_dim // 2
|
||||||
db_value=None):
|
self.to_queries = nn.Sequential(
|
||||||
bsz, seq_len, _ = x.shape #bsz: 批量大小, seq_len: 序列长度, _: 隐藏维度
|
nn.Linear(params.dim, self.knowledge_dim, bias=False),
|
||||||
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) #将输入张量x分别通过线性层wq, wk, wv进行变换,得到查询、键和值。
|
|
||||||
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim) #将变换后的张量xq重塑为形状为(bsz, seq_len, n_local_heads, head_dim)的形状。
|
|
||||||
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xk重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
|
|
||||||
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim) #将变换后的张量xv重塑为形状为(bsz, seq_len, n_local_kv_heads, head_dim)的形状。
|
|
||||||
|
|
||||||
# 应用旋转位置编码(使用实数版本)
|
|
||||||
xq, xk = apply_rotary_emb_real(xq, xk, pos_cis)
|
|
||||||
# kv_cache实现 REMOVED
|
|
||||||
# if past_key_value is not None:
|
|
||||||
# xk = torch.cat([past_key_value[0], xk], dim=1)
|
|
||||||
# xv = torch.cat([past_key_value[1], xv], dim=1)
|
|
||||||
# past_kv = (xk, xv) if use_cache else None
|
|
||||||
|
|
||||||
# 重复键值对
|
|
||||||
xq, xk, xv = (
|
|
||||||
xq.transpose(1, 2),
|
|
||||||
repeat_kv(xk, self.n_rep).transpose(1, 2),
|
|
||||||
repeat_kv(xv, self.n_rep).transpose(1, 2)
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# 如果提供了db_value,根据头的数量调整它的形状并与xv合并
|
## 数据库参数
|
||||||
if db_value is not None:
|
self.knowledge_num = params.knowledge_num
|
||||||
# 确保db_value的形状与xv兼容,假设db_value形状为[B, N, H, D]
|
self.knowledge_length = params.knowledge_length
|
||||||
if db_value.ndim == 4: # [B, N, H, D]
|
self.keys = nn.Parameter(torch.randn(self.knowledge_num, self.knowledge_dim) * 0.02, requires_grad=True)
|
||||||
db_value = db_value.transpose(1, 2) # -> [B, H, N, D]
|
self.product_key_topk = min(16, self.knowledge_num)
|
||||||
|
|
||||||
# 检查是否需要调整D维度
|
# 使用频率统计 - 使用register_buffer以便在GPU/CPU间正确移动
|
||||||
if db_value.shape[-1] != xv.shape[-1]:
|
self.register_buffer('has_update_keys', torch.zeros(self.knowledge_num))
|
||||||
# 如果db_value的维度与xv不同,可以添加一个投影层
|
|
||||||
# 或者在这里使用简单的调整方法
|
|
||||||
# 这里我们简单地通过均值池化或重复来调整维度
|
|
||||||
if db_value.shape[-1] > xv.shape[-1]:
|
|
||||||
# 降维
|
|
||||||
factor = db_value.shape[-1] // xv.shape[-1]
|
|
||||||
db_value = db_value.view(bsz, self.n_local_heads, seq_len, factor, xv.shape[-1])
|
|
||||||
db_value = db_value.mean(dim=3)
|
|
||||||
else:
|
|
||||||
# 升维
|
|
||||||
factor = xv.shape[-1] // db_value.shape[-1]
|
|
||||||
db_value = db_value.unsqueeze(-1).repeat(1, 1, 1, 1, factor)
|
|
||||||
db_value = db_value.view(bsz, self.n_local_heads, seq_len, xv.shape[-1])
|
|
||||||
|
|
||||||
# 将db_value与xv相加或融合
|
# 知识库存储 - 使用register_buffer因为这是整数索引,不需要梯度
|
||||||
# 这里我们简单地将它们相加,但你也可以使用其他融合方法
|
self.register_buffer('knowledge_dataset',
|
||||||
xv = xv + db_value
|
torch.randint(low=0, high=params.vocab_size, size=(self.knowledge_num, self.knowledge_length), dtype=torch.long)
|
||||||
|
)
|
||||||
|
|
||||||
# 使用Flash Attention
|
# 计算step数目,用于动态调整权重
|
||||||
if self.flash and seq_len != 1:
|
self.step_counter = 0
|
||||||
dropout_p = self.dropout if self.training else 0.0
|
|
||||||
output = F.scaled_dot_product_attention(
|
|
||||||
xq, xk, xv,
|
|
||||||
attn_mask=None,
|
|
||||||
dropout_p=dropout_p,
|
|
||||||
is_causal=True
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
|
||||||
scores += self.mask[:, :, :seq_len, :seq_len]
|
|
||||||
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
|
||||||
scores = self.attn_dropout(scores)
|
|
||||||
output = scores @ xv
|
|
||||||
|
|
||||||
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
|
self.freeze_embedding = False
|
||||||
output = self.resid_dropout(self.wo(output))
|
|
||||||
return output
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def intelligent_selection(self, query, all_scores, all_indices):
|
||||||
|
"""智能分层选择策略"""
|
||||||
|
if self.is_train == False:
|
||||||
|
return all_scores, all_indices
|
||||||
|
|
||||||
|
batch_size = all_scores.size(0)
|
||||||
|
device = all_scores.device
|
||||||
|
dtype = all_scores.dtype
|
||||||
|
|
||||||
|
# 对每个batch进行分层选择
|
||||||
|
enhanced_scores = all_scores.clone()
|
||||||
|
query_features = query.mean(dim=1) # [batch_size, dim]
|
||||||
|
|
||||||
|
# 预先计算所有候选条目的嵌入(批量优化)
|
||||||
|
all_candidate_indices = torch.cat([all_indices[i] for i in range(batch_size)], dim=0)
|
||||||
|
unique_indices, inverse_indices = torch.unique(all_candidate_indices, return_inverse=True)
|
||||||
|
|
||||||
|
# 批量计算唯一候选条目的嵌入
|
||||||
|
candidate_tokens = self.knowledge_dataset[unique_indices]
|
||||||
|
flat_tokens = candidate_tokens.view(-1)
|
||||||
|
flat_embeddings = self.tok_embeddings(flat_tokens)
|
||||||
|
#获取flat_tokens对应的index
|
||||||
|
pre_update_indices = unique_indices.view(-1)
|
||||||
|
pre_update_embeddings = flat_embeddings.view(
|
||||||
|
len(unique_indices), self.knowledge_length, -1
|
||||||
|
)
|
||||||
|
|
||||||
|
unique_candidate_features = flat_embeddings.view(
|
||||||
|
len(unique_indices), self.knowledge_length, -1
|
||||||
|
).mean(dim=1) # [num_unique_candidates, dim]
|
||||||
|
|
||||||
|
# 归一化候选特征(优化相似度计算)
|
||||||
|
normalized_candidates = F.normalize(unique_candidate_features, dim=-1)
|
||||||
|
normalized_queries = F.normalize(query_features, dim=-1)
|
||||||
|
|
||||||
|
# 收集所有batch的best_tokens
|
||||||
|
batch_best_tokens = []
|
||||||
|
batch_best_tokens_embeddings = []
|
||||||
|
|
||||||
|
for batch_idx in range(batch_size):
|
||||||
|
indices = all_indices[batch_idx]
|
||||||
|
|
||||||
|
# 获取当前batch候选条目对应的特征索引
|
||||||
|
start_idx = batch_idx * len(indices)
|
||||||
|
end_idx = start_idx + len(indices)
|
||||||
|
batch_inverse_indices = inverse_indices[start_idx:end_idx]
|
||||||
|
|
||||||
|
# 使用预计算的归一化特征进行优化相似度计算
|
||||||
|
batch_candidate_features = normalized_candidates[batch_inverse_indices]
|
||||||
|
query_feature = normalized_queries[batch_idx]
|
||||||
|
|
||||||
|
# 使用矩阵乘法计算余弦相似度
|
||||||
|
similarity_scores = torch.mv(batch_candidate_features, query_feature)
|
||||||
|
|
||||||
|
# 找到最大相似度分数的索引
|
||||||
|
max_similarity_idx = torch.argmax(similarity_scores)
|
||||||
|
|
||||||
|
# 获取最大相似度对应的候选条目索引
|
||||||
|
best_candidate_idx = indices[max_similarity_idx]
|
||||||
|
|
||||||
|
# 获取对应的tokens
|
||||||
|
best_tokens = self.knowledge_dataset[best_candidate_idx]
|
||||||
|
best_tokens_embeddings = self.tok_embeddings(best_tokens)
|
||||||
|
|
||||||
|
# 将当前batch的best_tokens添加到列表中
|
||||||
|
batch_best_tokens.append(best_tokens)
|
||||||
|
batch_best_tokens_embeddings.append(best_tokens_embeddings)
|
||||||
|
|
||||||
|
# 将所有batch的best_tokens堆叠成一个张量
|
||||||
|
# [batch_size, knowledge_length]
|
||||||
|
all_best_tokens = torch.stack(batch_best_tokens, dim=0)
|
||||||
|
all_best_tokens_embeddings = torch.stack(batch_best_tokens_embeddings, dim=0)
|
||||||
|
|
||||||
|
# 获取
|
||||||
|
|
||||||
|
# 使用重新计算的embeddings更新self.keys
|
||||||
|
if self.is_train:
|
||||||
|
self._update_keys_with_embeddings(pre_update_indices, pre_update_embeddings)
|
||||||
|
|
||||||
|
# 更新被修改过的key
|
||||||
|
with torch.no_grad():
|
||||||
|
self.has_update_keys[pre_update_indices] = 1
|
||||||
|
|
||||||
|
return all_best_tokens, all_best_tokens_embeddings
|
||||||
|
|
||||||
|
def _update_keys_with_embeddings(self, pre_update_indices, pre_update_embeddings):
|
||||||
|
if self.freeze_embedding:
|
||||||
|
return
|
||||||
|
# 使用pre_update_embeddings更新self.keys
|
||||||
|
with torch.no_grad():
|
||||||
|
pre_update_embeddings = pre_update_embeddings.mean(dim=1) # [337, 512]
|
||||||
|
pre_update_embeddings = self.to_queries(pre_update_embeddings)
|
||||||
|
self.keys[pre_update_indices] = pre_update_embeddings
|
||||||
|
|
||||||
|
def search_index(self,x):
|
||||||
|
batch_size, seq_len, dim = x.shape
|
||||||
|
|
||||||
|
# collapse sequence dimension by averaging
|
||||||
|
x_flat = x.mean(dim=1) # [batch_size, dim]
|
||||||
|
|
||||||
|
queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
|
||||||
|
# queries = queries.reshape(batch_size, 2, self.key_dim)
|
||||||
|
# queries = queries.permute(1, 0, 2)
|
||||||
|
|
||||||
|
# 2. 计算queries与keys的相似度
|
||||||
|
sim = torch.einsum('b d, k d -> b k', queries, self.keys)
|
||||||
|
|
||||||
|
# 3. 在两个子空间分别做top-k
|
||||||
|
scores_and_indices = sim.topk(self.product_key_topk, dim=-1)
|
||||||
|
scores, indices = scores_and_indices[0], scores_and_indices[1]
|
||||||
|
|
||||||
|
# 5. 应用智能分层选择策略
|
||||||
|
best_tokens, best_tokens_embeddings = self.intelligent_selection(x, scores, indices)
|
||||||
|
|
||||||
|
# 6. 更新1%的keys
|
||||||
|
if self.is_train:
|
||||||
|
# 获取未更新过的keys的索引
|
||||||
|
not_updated_indices = torch.where(self.has_update_keys == 0)[0]
|
||||||
|
|
||||||
|
# 如果有未更新的keys,随机选择num_update_keys个进行更新
|
||||||
|
if len(not_updated_indices) > 0:
|
||||||
|
num_update_keys = int(self.knowledge_num * 0.01)
|
||||||
|
perm = torch.randperm(len(not_updated_indices))[:num_update_keys]
|
||||||
|
perm_num = perm.shape[0]
|
||||||
|
pre_update_indices = not_updated_indices[perm]
|
||||||
|
pre_update_tokens = self.knowledge_dataset[pre_update_indices]
|
||||||
|
pre_update_embeddings = self.tok_embeddings(pre_update_tokens.view(-1))
|
||||||
|
pre_update_embeddings = pre_update_embeddings.view(perm_num, self.knowledge_length, -1)
|
||||||
|
self._update_keys_with_embeddings(pre_update_indices, pre_update_embeddings)
|
||||||
|
# 更新被修改过的key
|
||||||
|
with torch.no_grad():
|
||||||
|
self.has_update_keys[pre_update_indices] = 1
|
||||||
|
else:
|
||||||
|
print("all keys are updated")
|
||||||
|
# 重置所有keys的更新状态
|
||||||
|
self.has_update_keys.zero_()
|
||||||
|
# 重新获取所有可更新的索引
|
||||||
|
not_updated_indices = torch.arange(len(self.has_update_keys), device=self.has_update_keys.device)
|
||||||
|
num_update_keys = int(self.knowledge_num * 0.01)
|
||||||
|
perm = torch.randperm(len(not_updated_indices))[:num_update_keys]
|
||||||
|
pre_update_indices = not_updated_indices[perm]
|
||||||
|
pre_update_tokens = self.knowledge_dataset[pre_update_indices]
|
||||||
|
pre_update_embeddings = self.tok_embeddings(pre_update_tokens.view(-1))
|
||||||
|
pre_update_embeddings = pre_update_embeddings.view(num_update_keys, self.knowledge_length, -1)
|
||||||
|
self._update_keys_with_embeddings(pre_update_indices, pre_update_embeddings)
|
||||||
|
# 更新被修改过的key
|
||||||
|
with torch.no_grad():
|
||||||
|
self.has_update_keys[pre_update_indices] = 1
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
return best_tokens, best_tokens_embeddings
|
||||||
|
|
||||||
class CrossAttention(nn.Module):
|
class CrossAttention(nn.Module):
|
||||||
def __init__(
|
def __init__(
|
||||||
@ -295,6 +284,58 @@ class CrossAttention(nn.Module):
|
|||||||
|
|
||||||
return context
|
return context
|
||||||
|
|
||||||
|
class Attention(nn.Module):
|
||||||
|
def __init__(self, args: LMConfig):
|
||||||
|
super().__init__()
|
||||||
|
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
|
||||||
|
assert args.n_heads % self.n_kv_heads == 0
|
||||||
|
self.n_local_heads = args.n_heads
|
||||||
|
self.n_local_kv_heads = self.n_kv_heads
|
||||||
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads
|
||||||
|
self.head_dim = args.dim // args.n_heads
|
||||||
|
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
|
||||||
|
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
||||||
|
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
|
||||||
|
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
|
||||||
|
self.attn_dropout = nn.Dropout(args.dropout)
|
||||||
|
self.resid_dropout = nn.Dropout(args.dropout)
|
||||||
|
self.dropout = args.dropout
|
||||||
|
self.flash = hasattr(torch.nn.functional, 'scaled_dot_product_attention') and args.flash_attn
|
||||||
|
# print("WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0")
|
||||||
|
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
|
||||||
|
mask = torch.triu(mask, diagonal=1)
|
||||||
|
self.register_buffer("mask", mask, persistent=False)
|
||||||
|
|
||||||
|
def forward(self,
|
||||||
|
x: torch.Tensor,
|
||||||
|
pos_cis: torch.Tensor):
|
||||||
|
bsz, seq_len, _ = x.shape
|
||||||
|
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
|
||||||
|
xq = xq.view(bsz, seq_len, self.n_local_heads, self.head_dim)
|
||||||
|
xk = xk.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
||||||
|
xv = xv.view(bsz, seq_len, self.n_local_kv_heads, self.head_dim)
|
||||||
|
|
||||||
|
xq, xk = apply_rotary_emb(xq, xk, pos_cis)
|
||||||
|
if self.flash and seq_len != 1:
|
||||||
|
dropout_p = self.dropout if self.training else 0.0
|
||||||
|
output = F.scaled_dot_product_attention(
|
||||||
|
xq, xk, xv,
|
||||||
|
attn_mask=None,
|
||||||
|
dropout_p=dropout_p,
|
||||||
|
is_causal=True
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
scores = (xq @ xk.transpose(-2, -1)) / math.sqrt(self.head_dim)
|
||||||
|
scores += self.mask[:, :, :seq_len, :seq_len]
|
||||||
|
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
|
||||||
|
scores = self.attn_dropout(scores)
|
||||||
|
output = scores @ xv
|
||||||
|
|
||||||
|
output = output.transpose(1, 2).reshape(bsz, seq_len, -1)
|
||||||
|
output = self.resid_dropout(self.wo(output))
|
||||||
|
return output
|
||||||
|
|
||||||
|
|
||||||
class FeedForward(nn.Module):
|
class FeedForward(nn.Module):
|
||||||
def __init__(self, config: LMConfig):
|
def __init__(self, config: LMConfig):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
@ -427,170 +468,31 @@ class MOEFeedForward(nn.Module):
|
|||||||
|
|
||||||
|
|
||||||
class MiniMindBlock(nn.Module):
|
class MiniMindBlock(nn.Module):
|
||||||
def __init__(self, layer_id: int, config: LMConfig):
|
def __init__(self, layer_id: int, config: LMConfig, knowledge_dataset: KnowledgeDataset):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
self.n_heads = config.n_heads
|
self.n_heads = config.n_heads
|
||||||
self.dim = config.dim
|
self.dim = config.dim
|
||||||
self.head_dim = config.dim // config.n_heads
|
self.head_dim = config.dim // config.n_heads
|
||||||
self.attention = Attention(config)
|
self.self_attention = Attention(config)
|
||||||
self.cross_att = CrossAttention(config)
|
self.cross_attention = CrossAttention(config)
|
||||||
|
self.knowledge_dataset = knowledge_dataset
|
||||||
|
|
||||||
self.layer_id = layer_id
|
self.layer_id = layer_id
|
||||||
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
self.attention_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
||||||
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
self.ffn_norm = RMSNorm(config.dim, eps=config.norm_eps)
|
||||||
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
|
self.feed_forward = FeedForward(config) if not config.use_moe else MOEFeedForward(config)
|
||||||
|
|
||||||
# 假设num_experts是已定义的总专家数量的平方根
|
def forward(self, x, pos_cis):
|
||||||
|
h_attn = self.self_attention(
|
||||||
|
|
||||||
# 查询生成的参数
|
|
||||||
|
|
||||||
|
|
||||||
# 创建查询生成模块
|
|
||||||
# if weight_down_embed is not None:
|
|
||||||
# self.to_queries = nn.Sequential(
|
|
||||||
# nn.Linear(config.dim, self.dim_key * 2, bias=False),
|
|
||||||
# # nn.Unflatten(2, (2, self.n_heads, self.dim_key)) # 替代Rearrange
|
|
||||||
# )
|
|
||||||
|
|
||||||
# # 超参数
|
|
||||||
# self.product_key_topk = min(16, self.num_keys) # 确保不超过num_keys
|
|
||||||
# self.num_experts_per_head_topk = 1 # 最终每个头选取的专家数
|
|
||||||
|
|
||||||
def forward(self, x, db_value, pos_cis):
|
|
||||||
# import pdb;pdb.set_trace()
|
|
||||||
# db_value = None
|
|
||||||
|
|
||||||
# # 如果有weight_down_embed,使用Product Key机制
|
|
||||||
# if self.weight_down_embed is not None:
|
|
||||||
# # 1. 生成queries
|
|
||||||
# batch_size, seq_len, dim = x.shape
|
|
||||||
|
|
||||||
# # collapse sequence dimension by averaging
|
|
||||||
# x_flat = x.mean(dim=1) # [batch_size, dim]
|
|
||||||
# queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
|
|
||||||
# queries = queries.reshape(batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
|
|
||||||
# queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
|
|
||||||
|
|
||||||
# # 2. 计算queries与keys的相似度
|
|
||||||
# sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
|
|
||||||
|
|
||||||
# # 3. 在两个子空间分别做top-k
|
|
||||||
# scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
|
|
||||||
# scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
|
|
||||||
# indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
|
|
||||||
|
|
||||||
# # 4. 组合两个子空间的分数和索引
|
|
||||||
# all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
|
|
||||||
# all_scores = all_scores.view(*all_scores.shape[:-2], -1)
|
|
||||||
|
|
||||||
# all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
|
|
||||||
# all_indices = all_indices.view(*all_indices.shape[:-2], -1)
|
|
||||||
|
|
||||||
# # 5. 最终top-k选择
|
|
||||||
# scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
|
|
||||||
# indices = all_indices.gather(-1, pk_indices)
|
|
||||||
|
|
||||||
# # 6. 从embedding中获取专家值
|
|
||||||
|
|
||||||
# # 从embedding中获取值
|
|
||||||
# flat_indices = indices.view(-1) # 将索引展平为一维张量
|
|
||||||
# db_values = self.weight_down_embed(flat_indices)
|
|
||||||
|
|
||||||
# # 重塑回原始形状
|
|
||||||
# db_value = db_values.view(batch_size, -1, dim)
|
|
||||||
|
|
||||||
|
|
||||||
# 注意力计算
|
|
||||||
h_attn = self.attention(
|
|
||||||
self.attention_norm(x),
|
self.attention_norm(x),
|
||||||
pos_cis,
|
pos_cis
|
||||||
db_value=db_value
|
|
||||||
)
|
)
|
||||||
|
db, db_embeddings = self.knowledge_dataset.search_index(h_attn)
|
||||||
h_attn = self.cross_att(h_attn, db_value)
|
h_attn = self.cross_attention(h_attn, db_embeddings)
|
||||||
|
|
||||||
# 残差连接
|
|
||||||
h = x + h_attn
|
h = x + h_attn
|
||||||
|
|
||||||
# 前馈神经网络
|
|
||||||
out = h + self.feed_forward(self.ffn_norm(h))
|
out = h + self.feed_forward(self.ffn_norm(h))
|
||||||
return out
|
return out
|
||||||
|
|
||||||
class ExtractDB(nn.Module):
|
|
||||||
def __init__(self,params):
|
|
||||||
# 修改专家数量和知识维度,确保能开方
|
|
||||||
super().__init__()
|
|
||||||
self.batch_size = None
|
|
||||||
self.dim = params.dim
|
|
||||||
self.dim_key = self.dim // 2
|
|
||||||
self.knowledge_num = params.knowledge_num # 100专家,确保是完全平方数
|
|
||||||
# 将knowledge_dim设置为与head_dim相同,以便在attention中直接使用
|
|
||||||
self.head_dim = params.dim // params.n_heads
|
|
||||||
self.knowledge_length = params.knowledge_length
|
|
||||||
|
|
||||||
# 使用register_buffer代替nn.Parameter,避免梯度问题
|
|
||||||
# self.register_buffer('weight_down_embed', torch.randn(self.knowledge_num, self.knowledge_length) * 0.02)
|
|
||||||
self.register_buffer('weight_down_embed',torch.randint(low=0,high=6400, size=(self.knowledge_num, self.knowledge_length),dtype=torch.long))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
self.num_keys = int(math.sqrt(self.knowledge_num)) if self.knowledge_num > 0 else 0
|
|
||||||
self.product_key_topk = min(16, self.num_keys)
|
|
||||||
self.keys = nn.Parameter(torch.randn(self.num_keys, 2, self.dim_key) * 0.02)
|
|
||||||
self.num_experts_per_head_topk = 1
|
|
||||||
self.to_queries = nn.Sequential(
|
|
||||||
nn.Linear(params.dim, self.dim_key * 2, bias=False),
|
|
||||||
)
|
|
||||||
|
|
||||||
def q_to_k(self,x):
|
|
||||||
# 1. 生成queries
|
|
||||||
self.batch_size, seq_len, dim = x.shape
|
|
||||||
|
|
||||||
# collapse sequence dimension by averaging
|
|
||||||
x_flat = x.mean(dim=1) # [batch_size, dim]
|
|
||||||
|
|
||||||
queries = self.to_queries(x_flat) # [batch_size, 2*dim_key]
|
|
||||||
queries = queries.reshape(self.batch_size, 2, self.dim_key) # [batch_size, 2, dim_key]
|
|
||||||
queries = queries.permute(1, 0, 2) # [2, batch_size, dim_key]
|
|
||||||
|
|
||||||
# 2. 计算queries与keys的相似度
|
|
||||||
sim = torch.einsum('p b d, k p d -> p b k', queries, self.keys)
|
|
||||||
|
|
||||||
# 3. 在两个子空间分别做top-k
|
|
||||||
scores_and_indices = [sim[p].topk(self.product_key_topk, dim=-1) for p in range(2)]
|
|
||||||
scores_x, scores_y = scores_and_indices[0][0], scores_and_indices[1][0]
|
|
||||||
indices_x, indices_y = scores_and_indices[0][1], scores_and_indices[1][1]
|
|
||||||
|
|
||||||
# 4. 组合两个子空间的分数和索引
|
|
||||||
all_scores = scores_x.unsqueeze(-1) + scores_y.unsqueeze(-2)
|
|
||||||
all_scores = all_scores.view(*all_scores.shape[:-2], -1)
|
|
||||||
|
|
||||||
all_indices = (indices_x.unsqueeze(-1) * self.num_keys) + indices_y.unsqueeze(-2)
|
|
||||||
all_indices = all_indices.view(*all_indices.shape[:-2], -1)
|
|
||||||
|
|
||||||
# 5. 最终top-k选择
|
|
||||||
scores, pk_indices = all_scores.topk(self.num_experts_per_head_topk, dim=-1)
|
|
||||||
indices = all_indices.gather(-1, pk_indices)
|
|
||||||
flat_indices = indices.view(-1)
|
|
||||||
return flat_indices
|
|
||||||
|
|
||||||
def get_data(self, index):
|
|
||||||
# 直接从GPU获取embedding
|
|
||||||
db_values = self.weight_down_embed[index]#变成token了所以是1,后续再过emb
|
|
||||||
# db_value = db_values.view(self.batch_size,-1)
|
|
||||||
return db_values
|
|
||||||
|
|
||||||
@torch.no_grad()
|
|
||||||
def updata_value(self, k, v):#要加一个从向量返回index的过程
|
|
||||||
# 直接更新buffer上的值 (不需要梯度)
|
|
||||||
v_reshaped = v.view(v.size(0), -1)
|
|
||||||
# 确保数据类型匹配
|
|
||||||
v_reshaped = v_reshaped.to(dtype=self.weight_down_embed.dtype)
|
|
||||||
self.weight_down_embed[k] = v_reshaped
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
class MiniMindLM(PreTrainedModel):
|
class MiniMindLM(PreTrainedModel):
|
||||||
config_class = LMConfig
|
config_class = LMConfig
|
||||||
@ -601,110 +503,36 @@ class MiniMindLM(PreTrainedModel):
|
|||||||
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
|
self.vocab_size, self.n_layers = params.vocab_size, params.n_layers
|
||||||
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
|
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
|
||||||
self.dropout = nn.Dropout(params.dropout)
|
self.dropout = nn.Dropout(params.dropout)
|
||||||
# 移除旧的weight_down_embed声明
|
self.knowledge_dataset = KnowledgeDataset(params, self.tok_embeddings)
|
||||||
self.extract_db = ExtractDB(self.params)
|
self.layers = nn.ModuleList([MiniMindBlock(l, params, self.knowledge_dataset) for l in range(self.n_layers)])
|
||||||
|
|
||||||
# 将self.weight_down_embed传递给每个MiniMindBlock
|
|
||||||
self.layers = nn.ModuleList([MiniMindBlock(l, params) for l in range(self.n_layers)])
|
|
||||||
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
|
||||||
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
|
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
|
||||||
self.database_output = nn.Linear(params.dim, params.knowledge_length, bias=False)
|
|
||||||
self.tok_embeddings.weight = self.output.weight
|
self.tok_embeddings.weight = self.output.weight
|
||||||
self.database_output.weight = self.output.weight
|
self.register_buffer("pos_cis",
|
||||||
|
precompute_pos_cis(dim=params.dim // params.n_heads, theta=params.rope_theta),
|
||||||
# Calculate input dimension
|
|
||||||
input_dim = (self.params.max_seq_len-1)*self.params.n_layers
|
|
||||||
# Use a bottleneck architecture to reduce parameters
|
|
||||||
bottleneck_dim = 256 # Significantly smaller bottleneck dimension
|
|
||||||
|
|
||||||
# Factorized shared downsampling using two smaller convolutions
|
|
||||||
self.shared_downsample = nn.Sequential(
|
|
||||||
# First reduce input dimension to bottleneck
|
|
||||||
nn.Conv1d(input_dim, bottleneck_dim, kernel_size=1, padding='same'),
|
|
||||||
nn.ReLU(), # Non-linearity to improve representation capacity
|
|
||||||
# Then expand to target dimension
|
|
||||||
nn.Conv1d(bottleneck_dim, 128*8, kernel_size=1, padding='same')
|
|
||||||
)
|
|
||||||
|
|
||||||
# Specific layers for v path
|
|
||||||
self.downsample_v_specific = nn.Sequential(
|
|
||||||
nn.Conv1d(128*8, 128, kernel_size=1, padding='same'),
|
|
||||||
nn.Conv1d(128, self.params.knowledge_length, kernel_size=1, padding='same')
|
|
||||||
)
|
|
||||||
|
|
||||||
# Specific layers for q path
|
|
||||||
self.downsample_q_specific = nn.Sequential(
|
|
||||||
nn.Conv1d(128*8, 512, kernel_size=1, padding='same')
|
|
||||||
)
|
|
||||||
# 使用实数版本的位置编码,避免复数张量可能导致的段错误
|
|
||||||
self.register_buffer("pos_cis_real",
|
|
||||||
precompute_pos_cis_real(dim=params.dim // params.n_heads, theta=params.rope_theta),
|
|
||||||
persistent=False)
|
persistent=False)
|
||||||
self.params = params
|
self.OUT = CausalLMOutputWithPast()
|
||||||
|
self.freeze_embedding = False
|
||||||
|
|
||||||
def forward(self,
|
def forward(self,
|
||||||
input_ids: Optional[torch.Tensor] = None,
|
input_ids: Optional[torch.Tensor] = None,
|
||||||
logits_to_keep: Union[int, torch.Tensor] = 0,
|
logits_to_keep: Union[int, torch.Tensor] = 0,
|
||||||
|
step: int = 0,
|
||||||
**args):
|
**args):
|
||||||
start_pos = args.get('start_pos', 0)
|
start_pos = args.get('start_pos', 0)
|
||||||
|
if self.freeze_embedding and step == 0:
|
||||||
|
self.tok_embeddings.weight.requires_grad = False
|
||||||
|
# 同时冻结KnowledgeDataset的嵌入更新
|
||||||
|
self.knowledge_dataset.freeze_embedding = True
|
||||||
|
print("tok_embeddings.weight.requires_grad: ", self.tok_embeddings.weight.requires_grad)
|
||||||
|
print("knowledge_dataset.freeze_embedding: ", self.knowledge_dataset.freeze_embedding)
|
||||||
h = self.dropout(self.tok_embeddings(input_ids))
|
h = self.dropout(self.tok_embeddings(input_ids))
|
||||||
pos_cis_real = self.pos_cis_real[start_pos:start_pos + input_ids.size(1)]
|
pos_cis = self.pos_cis[start_pos:start_pos + input_ids.size(1)]
|
||||||
h_list = []
|
|
||||||
|
|
||||||
for l, layer in enumerate(self.layers):
|
for l, layer in enumerate(self.layers):
|
||||||
# 禁用数据库模式,使用固定值替代数据库查询
|
|
||||||
if self.params.disable_db:
|
|
||||||
# 创建一个形状为[batch_size, n_layers, dim]的tensor,所有元素值为1e-4
|
|
||||||
batch_size = h.size(0)
|
|
||||||
db_value = torch.full((batch_size, self.n_layers, self.params.dim), 1e-4,
|
|
||||||
dtype=h.dtype, device=h.device)
|
|
||||||
else:
|
|
||||||
# 正常模式,使用数据库查询
|
|
||||||
# import pdb;pdb.set_trace()
|
|
||||||
index = self.extract_db.q_to_k(h)
|
|
||||||
|
|
||||||
token_idx = self.extract_db.get_data(index) #这里是index
|
|
||||||
|
|
||||||
db_value =self.tok_embeddings(token_idx)
|
|
||||||
|
|
||||||
h = layer(
|
h = layer(
|
||||||
h, db_value, pos_cis_real
|
h, pos_cis
|
||||||
)
|
)
|
||||||
|
|
||||||
h_list.append(h.unsqueeze(0))
|
|
||||||
|
|
||||||
h_tensor = torch.cat(h_list, dim=0).permute(1, 0, 2, 3)
|
|
||||||
|
|
||||||
# 只在非禁用数据库模式下执行数据库更新逻辑
|
|
||||||
if not self.params.disable_db:
|
|
||||||
# 使用detach()分离计算图,避免多次反向传播
|
|
||||||
h_tensor_detached = h_tensor.detach()
|
|
||||||
h_tensor_detached = h_tensor_detached.reshape(h_tensor_detached.shape[0], -1, self.params.dim)
|
|
||||||
|
|
||||||
# 数据库更新逻辑与主计算图分离
|
|
||||||
with torch.no_grad():
|
|
||||||
|
|
||||||
# Compute shared downsampling layer once
|
|
||||||
shared_features = self.shared_downsample(h_tensor_detached)
|
|
||||||
|
|
||||||
# Get features from v path - now we output embedding-dimension vectors
|
|
||||||
z_v_features = self.downsample_v_specific(shared_features)
|
|
||||||
batch_z, seq_len, dim_z = z_v_features.shape
|
|
||||||
|
|
||||||
# Reshape to batch_size * knowledge_length, dim
|
|
||||||
z_v_flat = z_v_features.reshape(-1, dim_z)
|
|
||||||
|
|
||||||
# Direct token prediction - like the main language model head
|
|
||||||
token_logits = self.database_output(z_v_flat) # [batch_z * seq_len, vocab_size]
|
|
||||||
# Get token indices directly from logits
|
|
||||||
token_indices_flat = torch.argmax(token_logits, dim=-1)
|
|
||||||
token_indices = token_indices_flat.reshape(batch_z, -1)
|
|
||||||
|
|
||||||
# Process query path as before
|
|
||||||
z_q = self.downsample_q_specific(shared_features)
|
|
||||||
z_k = self.extract_db.q_to_k(z_q)
|
|
||||||
# self.extract_db.updata_value(z_k, token_indices)
|
|
||||||
|
|
||||||
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
||||||
logits = self.output(self.norm(h)[:, slice_indices, :])
|
logits = self.output(self.norm(h)[:, slice_indices, :])
|
||||||
aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward))
|
aux_loss = sum(l.feed_forward.aux_loss for l in self.layers if isinstance(l.feed_forward, MOEFeedForward))
|
||||||
@ -717,12 +545,6 @@ class MiniMindLM(PreTrainedModel):
|
|||||||
|
|
||||||
output.aux_loss = aux_loss
|
output.aux_loss = aux_loss
|
||||||
|
|
||||||
# 尝试添加其他属性(如果支持的话)
|
|
||||||
# try:
|
|
||||||
# output.hidden_states = h
|
|
||||||
# except:
|
|
||||||
# pass
|
|
||||||
|
|
||||||
return output
|
return output
|
||||||
|
|
||||||
@torch.inference_mode()
|
@torch.inference_mode()
|
||||||
@ -755,13 +577,14 @@ class MiniMindLM(PreTrainedModel):
|
|||||||
return res
|
return res
|
||||||
|
|
||||||
def _stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, **args):
|
def _stream(self, input_ids, eos_token_id, max_new_tokens, temperature, top_p, rp, **args):
|
||||||
start, first_seq = input_ids.shape[1], True
|
start, first_seq, past_kvs = input_ids.shape[1], True, None
|
||||||
while input_ids.shape[1] < max_new_tokens - 1:
|
while input_ids.shape[1] < max_new_tokens - 1:
|
||||||
if first_seq:
|
if first_seq:
|
||||||
out, first_seq = self(input_ids, **args), False
|
out, first_seq = self(input_ids, **args), False
|
||||||
else:
|
else:
|
||||||
out = self(input_ids[:, -1:], start_pos=input_ids.shape[1] - 1, **args)
|
out = self(input_ids[:, -1:],
|
||||||
logits = out.logits[:, -1, :]
|
start_pos=input_ids.shape[1] - 1, **args)
|
||||||
|
logits, past_kvs = out.logits[:, -1, :], out.past_key_values
|
||||||
logits[:, list(set(input_ids.tolist()[0]))] /= rp
|
logits[:, list(set(input_ids.tolist()[0]))] /= rp
|
||||||
logits /= (temperature + 1e-9)
|
logits /= (temperature + 1e-9)
|
||||||
if top_p is not None and top_p < 1.0:
|
if top_p is not None and top_p < 1.0:
|
||||||
|
@ -1,8 +1,8 @@
|
|||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
|
|
||||||
# 激活conda环境
|
# 激活conda环境
|
||||||
# source $(conda info --base)/etc/profile.d/conda.sh
|
source $(conda info --base)/etc/profile.d/conda.sh
|
||||||
# conda activate ycz_accelerate
|
conda activate mini
|
||||||
|
|
||||||
# 设置环境变量以帮助调试
|
# 设置环境变量以帮助调试
|
||||||
export NCCL_DEBUG=INFO
|
export NCCL_DEBUG=INFO
|
||||||
@ -26,24 +26,9 @@ export PYTHONFAULTHANDLER=1
|
|||||||
# --profile_interval 10
|
# --profile_interval 10
|
||||||
|
|
||||||
# 方法2: 使用命令行参数直接配置accelerate
|
# 方法2: 使用命令行参数直接配置accelerate
|
||||||
CUDA_VISIBLE_DEVICES=0 accelerate launch \
|
CUDA_VISIBLE_DEVICES=0 /opt/conda/envs/mini/bin/python -m accelerate.commands.launch \
|
||||||
--num_processes=1 \
|
--num_processes=1 \
|
||||||
--mixed_precision=bf16 \
|
--mixed_precision=bf16 \
|
||||||
--main_process_port=29500 \
|
--main_process_port=29500 \
|
||||||
train_pretrain_accelerate.py \
|
train_pretrain_accelerate.py \
|
||||||
--epochs 3 \
|
|
||||||
--batch_size 24 \
|
|
||||||
--learning_rate 2e-4 \
|
|
||||||
--dtype bfloat16 \
|
|
||||||
--accumulation_steps 32 \
|
|
||||||
--grad_clip 1.0 \
|
|
||||||
--log_interval 100 \
|
|
||||||
--save_interval 10000 \
|
|
||||||
--dim 512 \
|
|
||||||
--n_layers 12 \
|
|
||||||
--max_seq_len 512 \
|
|
||||||
--use_flash_attn \
|
|
||||||
--profile \
|
|
||||||
--profile_interval 10\
|
|
||||||
--knowledge_num 4096 \
|
|
||||||
--knowledge_length 8
|
|
||||||
|
@ -74,8 +74,8 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
|
|||||||
nn.init.ones_(module.weight)
|
nn.init.ones_(module.weight)
|
||||||
|
|
||||||
# 初始化位置编码相关参数
|
# 初始化位置编码相关参数
|
||||||
if hasattr(model.extract_db, 'keys'):
|
if hasattr(model.knowledge_dataset, 'keys'):
|
||||||
nn.init.normal_(model.extract_db.keys, mean=0.0, std=0.02)
|
nn.init.normal_(model.knowledge_dataset.keys, mean=0.0, std=0.02)
|
||||||
|
|
||||||
Logger("Default model initialization completed")
|
Logger("Default model initialization completed")
|
||||||
|
|
||||||
@ -88,54 +88,52 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
|
|||||||
|
|
||||||
if database_init_path:
|
if database_init_path:
|
||||||
import json
|
import json
|
||||||
import numpy as np
|
|
||||||
from sentence_transformers import SentenceTransformer
|
|
||||||
import os
|
import os
|
||||||
|
|
||||||
# 聚类参数(需要提前定义用于缓存检查)
|
# 数据库参数
|
||||||
knowledge_num = args.knowledge_num
|
knowledge_num = args.knowledge_num
|
||||||
knowledge_length = args.knowledge_length
|
knowledge_length = args.knowledge_length
|
||||||
|
|
||||||
# 检查是否使用缓存(提前检查,避免不必要的数据处理)
|
# 检查是否使用缓存
|
||||||
cache_dir = os.path.dirname(args.cluster_cache_path)
|
cache_dir = os.path.dirname(args.cluster_cache_path)
|
||||||
if cache_dir:
|
if cache_dir:
|
||||||
os.makedirs(cache_dir, exist_ok=True)
|
os.makedirs(cache_dir, exist_ok=True)
|
||||||
|
|
||||||
clustered_tensor = None
|
processed_tensor = None
|
||||||
|
|
||||||
# 尝试加载缓存的聚类结果
|
# 尝试加载缓存的处理结果
|
||||||
if not args.recompute_clusters and os.path.exists(args.cluster_cache_path):
|
if not args.recompute_clusters and os.path.exists(args.cluster_cache_path):
|
||||||
try:
|
try:
|
||||||
Logger(f"Loading cached cluster results from {args.cluster_cache_path}")
|
Logger(f"Loading cached processed results from {args.cluster_cache_path}")
|
||||||
clustered_tensor = torch.load(args.cluster_cache_path)
|
processed_tensor = torch.load(args.cluster_cache_path)
|
||||||
|
|
||||||
# 验证缓存文件的形状是否可用
|
# 验证缓存文件的形状是否可用
|
||||||
cached_knowledge_num, cached_knowledge_length = clustered_tensor.shape
|
cached_knowledge_num, cached_knowledge_length = processed_tensor.shape
|
||||||
|
|
||||||
if cached_knowledge_length == knowledge_length:
|
if cached_knowledge_length == knowledge_length:
|
||||||
if cached_knowledge_num >= knowledge_num:
|
if cached_knowledge_num >= knowledge_num:
|
||||||
# 缓存足够大,可以截取使用
|
# 缓存足够大,可以截取使用
|
||||||
clustered_tensor = clustered_tensor[:knowledge_num, :]
|
processed_tensor = processed_tensor[:knowledge_num, :]
|
||||||
Logger(f"Successfully loaded cached clusters with shape {clustered_tensor.shape}")
|
Logger(f"Successfully loaded cached data with shape {processed_tensor.shape}")
|
||||||
Logger(f"Truncated from cached shape ({cached_knowledge_num}, {cached_knowledge_length}) to required shape ({knowledge_num}, {knowledge_length})")
|
Logger(f"Truncated from cached shape ({cached_knowledge_num}, {cached_knowledge_length}) to required shape ({knowledge_num}, {knowledge_length})")
|
||||||
Logger("Skipping database initialization and clustering - using cached results")
|
Logger("Skipping database initialization - using cached results")
|
||||||
else:
|
else:
|
||||||
# 缓存太小,需要重新计算
|
# 缓存太小,需要重新计算
|
||||||
Logger(f"Cached knowledge_num ({cached_knowledge_num}) < required knowledge_num ({knowledge_num}), recomputing...")
|
Logger(f"Cached knowledge_num ({cached_knowledge_num}) < required knowledge_num ({knowledge_num}), recomputing...")
|
||||||
clustered_tensor = None
|
processed_tensor = None
|
||||||
else:
|
else:
|
||||||
# knowledge_length不匹配,需要重新计算
|
# knowledge_length不匹配,需要重新计算
|
||||||
Logger(f"Cached knowledge_length ({cached_knowledge_length}) != required knowledge_length ({knowledge_length}), recomputing...")
|
Logger(f"Cached knowledge_length ({cached_knowledge_length}) != required knowledge_length ({knowledge_length}), recomputing...")
|
||||||
clustered_tensor = None
|
processed_tensor = None
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
Logger(f"Failed to load cached clusters: {e}, recomputing...")
|
Logger(f"Failed to load cached data: {e}, recomputing...")
|
||||||
clustered_tensor = None
|
processed_tensor = None
|
||||||
|
|
||||||
# 只有在没有有效缓存时才进行数据库初始化和聚类计算
|
# 只有在没有有效缓存时才进行数据库初始化和处理
|
||||||
if clustered_tensor is None:
|
if processed_tensor is None:
|
||||||
Logger(f"Loading database initialization data from {database_init_path}")
|
Logger(f"Loading database initialization data from {database_init_path}")
|
||||||
|
|
||||||
# 1. 加载JSON文件并转换为字典
|
# 1. 加载JSON文件
|
||||||
with open(database_init_path, 'r', encoding='utf-8') as f:
|
with open(database_init_path, 'r', encoding='utf-8') as f:
|
||||||
database_data = json.load(f)
|
database_data = json.load(f)
|
||||||
|
|
||||||
@ -147,300 +145,73 @@ def init_model(lm_config, pretrained_embedding_path=None, database_init_path=Non
|
|||||||
sorted_sentences = sorted(sentences_data, key=lambda x: x.get('importance_score', 0.0), reverse=True)
|
sorted_sentences = sorted(sentences_data, key=lambda x: x.get('importance_score', 0.0), reverse=True)
|
||||||
Logger(f"Sorted sentences by importance score (highest: {sorted_sentences[0].get('importance_score', 0.0)}, lowest: {sorted_sentences[-1].get('importance_score', 0.0)})")
|
Logger(f"Sorted sentences by importance score (highest: {sorted_sentences[0].get('importance_score', 0.0)}, lowest: {sorted_sentences[-1].get('importance_score', 0.0)})")
|
||||||
|
|
||||||
# 3. 下载并初始化本地嵌入模型
|
# 3. 处理每条数据,不进行聚类
|
||||||
embedding_model_name = "sentence-transformers/all-mpnet-base-v2" # 轻量级但效果好的模型
|
Logger("Processing individual sentences...")
|
||||||
embedding_model_dir = "./models/sentence_transformers/models--sentence-transformers--all-mpnet-base-v2"
|
processed_rows = []
|
||||||
embedding_cache_dir = "./models/sentence_transformers/cache"
|
|
||||||
os.makedirs(embedding_cache_dir, exist_ok=True)
|
|
||||||
|
|
||||||
Logger(f"Loading embedding model: {embedding_model_name}")
|
# 获取空token的id(用于填充)
|
||||||
try:
|
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
|
||||||
embedding_model = SentenceTransformer(embedding_model_dir, cache_folder=embedding_cache_dir)
|
|
||||||
Logger("Embedding model loaded successfully")
|
|
||||||
except Exception as e:
|
|
||||||
Logger(f"Failed to load embedding model: {e}")
|
|
||||||
Logger("Falling back to random embeddings")
|
|
||||||
embedding_model = None
|
|
||||||
|
|
||||||
# 4. 对每个corrected_sentence进行嵌入和token长度计算
|
# 处理所需数量的句子
|
||||||
Logger("Processing sentences for embeddings and token lengths...")
|
num_to_process = min(knowledge_num, len(sorted_sentences))
|
||||||
|
|
||||||
# 提取所有句子
|
for i in range(num_to_process):
|
||||||
sentences = [sentence_data.get('corrected_sentence', '') for sentence_data in sorted_sentences]
|
sentence_data = sorted_sentences[i]
|
||||||
|
sentence = sentence_data.get('corrected_sentence', '')
|
||||||
|
|
||||||
# 批量计算token长度
|
# 将句子转换为tokens
|
||||||
Logger("Computing token lengths...")
|
sentence_tokens = tokenizer.encode(sentence, add_special_tokens=False)
|
||||||
token_lengths = []
|
|
||||||
for sentence in sentences:
|
|
||||||
tokens = tokenizer.encode(sentence, add_special_tokens=False)
|
|
||||||
token_lengths.append(len(tokens))
|
|
||||||
|
|
||||||
# 批量计算嵌入 - 大幅提升速度
|
# 截断或填充到knowledge_length
|
||||||
Logger("Computing embeddings in batches...")
|
if len(sentence_tokens) > knowledge_length:
|
||||||
embeddings_list = []
|
# 如果超过长度,截断
|
||||||
batch_size = 256 # 可以根据GPU内存调整
|
sentence_tokens = sentence_tokens[:knowledge_length]
|
||||||
|
Logger(f"Sentence {i+1} truncated from {len(tokenizer.encode(sentence, add_special_tokens=False))} to {knowledge_length} tokens")
|
||||||
|
else:
|
||||||
|
# 如果不足长度,用空token填充
|
||||||
|
original_length = len(sentence_tokens)
|
||||||
|
sentence_tokens.extend([pad_token_id] * (knowledge_length - len(sentence_tokens)))
|
||||||
|
if original_length < knowledge_length:
|
||||||
|
Logger(f"Sentence {i+1} padded from {original_length} to {knowledge_length} tokens")
|
||||||
|
|
||||||
if embedding_model is not None:
|
processed_rows.append(sentence_tokens)
|
||||||
try:
|
|
||||||
for i in range(0, len(sentences), batch_size):
|
|
||||||
batch_sentences = sentences[i:i+batch_size]
|
|
||||||
batch_embeddings = embedding_model.encode(
|
|
||||||
batch_sentences,
|
|
||||||
convert_to_tensor=False,
|
|
||||||
show_progress_bar=True if i == 0 else False,
|
|
||||||
batch_size=batch_size
|
|
||||||
)
|
|
||||||
embeddings_list.extend(batch_embeddings)
|
|
||||||
|
|
||||||
if (i + batch_size) % (batch_size * 10) == 0:
|
if (i + 1) % 1000 == 0:
|
||||||
Logger(f"Processed {min(i + batch_size, len(sentences))}/{len(sentences)} sentences")
|
Logger(f"Processed {i + 1}/{num_to_process} sentences")
|
||||||
|
|
||||||
Logger("Batch embedding computation completed")
|
# 如果句子数量不足,用空token填充剩余位置
|
||||||
except Exception as e:
|
while len(processed_rows) < knowledge_num:
|
||||||
Logger(f"Error in batch encoding: {e}")
|
empty_tokens = [pad_token_id] * knowledge_length
|
||||||
Logger("Falling back to random embeddings")
|
processed_rows.append(empty_tokens)
|
||||||
embeddings_list = [np.random.randn(384).astype(np.float32) for _ in sentences]
|
if len(processed_rows) % 1000 == 0:
|
||||||
else:
|
Logger(f"Added empty entry {len(processed_rows)}/{knowledge_num}")
|
||||||
# 使用随机嵌入
|
|
||||||
embeddings_list = [np.random.randn(384).astype(np.float32) for _ in sentences]
|
|
||||||
|
|
||||||
# 创建处理后的句子列表
|
Logger(f"Finished adding empty entries. Total: {len(processed_rows)}/{knowledge_num}")
|
||||||
processed_sentences = []
|
|
||||||
for i, (sentence_data, embedding, token_length) in enumerate(zip(sorted_sentences, embeddings_list, token_lengths)):
|
|
||||||
processed_sentences.append({
|
|
||||||
'sentence': sentence_data.get('corrected_sentence', ''),
|
|
||||||
'importance_score': sentence_data.get('importance_score', 0.0),
|
|
||||||
'token_length': token_length,
|
|
||||||
'embedding': embedding, # Convert numpy array to list
|
|
||||||
'original_index': i
|
|
||||||
})
|
|
||||||
|
|
||||||
# 转换为numpy数组以便后续处理
|
|
||||||
embeddings_array = np.array(embeddings_list)
|
|
||||||
token_lengths_array = np.array(token_lengths)
|
|
||||||
|
|
||||||
Logger(f"Embedding processing completed:")
|
|
||||||
Logger(f" - Total sentences: {len(processed_sentences)}")
|
|
||||||
Logger(f" - Embedding shape: {embeddings_array.shape}")
|
|
||||||
Logger(f" - Average token length: {np.mean(token_lengths_array):.2f}")
|
|
||||||
Logger(f" - Token length range: {np.min(token_lengths_array)} - {np.max(token_lengths_array)}")
|
|
||||||
|
|
||||||
# 聚类参数定义
|
|
||||||
min_tokens = int(0.85 * knowledge_length)
|
|
||||||
max_tokens = int(0.95 * knowledge_length)
|
|
||||||
|
|
||||||
# 优化1: 预计算所有嵌入的相似度矩阵(如果数据量不太大)
|
|
||||||
if len(processed_sentences) <= 10000: # 只有在数据量不太大时才预计算
|
|
||||||
Logger("Pre-computing similarity matrix for faster clustering...")
|
|
||||||
embeddings_matrix = np.array([s['embedding'] for s in processed_sentences])
|
|
||||||
similarity_matrix = cosine_similarity(embeddings_matrix)
|
|
||||||
Logger(f"Similarity matrix computed: {similarity_matrix.shape}")
|
|
||||||
else:
|
|
||||||
similarity_matrix = None
|
|
||||||
embeddings_matrix = np.array([s['embedding'] for s in processed_sentences])
|
|
||||||
|
|
||||||
clustered_rows = []
|
|
||||||
remaining_indices = list(range(len(processed_sentences))) # 使用索引而不是对象
|
|
||||||
|
|
||||||
Logger(f"Target: {knowledge_num} clusters, each with {min_tokens}-{max_tokens} tokens")
|
|
||||||
|
|
||||||
# 选择聚类算法
|
|
||||||
if args.fast_clustering and len(processed_sentences) > 5000:
|
|
||||||
Logger("Using ultra-fast approximate clustering algorithm...")
|
|
||||||
|
|
||||||
# 超快速聚类:随机采样 + 批量处理
|
|
||||||
import random
|
|
||||||
random.seed(42) # 确保可重现性
|
|
||||||
|
|
||||||
# 按重要性分层采样
|
|
||||||
high_importance = [i for i, s in enumerate(processed_sentences) if s['importance_score'] > 0.7]
|
|
||||||
medium_importance = [i for i, s in enumerate(processed_sentences) if 0.3 <= s['importance_score'] <= 0.7]
|
|
||||||
low_importance = [i for i, s in enumerate(processed_sentences) if s['importance_score'] < 0.3]
|
|
||||||
|
|
||||||
Logger(f"Importance distribution: High={len(high_importance)}, Medium={len(medium_importance)}, Low={len(low_importance)}")
|
|
||||||
|
|
||||||
for cluster_idx in tqdm(range(knowledge_num)):
|
|
||||||
# 分层选择种子:优先选择高重要性句子
|
|
||||||
if high_importance:
|
|
||||||
seed_pool = high_importance
|
|
||||||
elif medium_importance:
|
|
||||||
seed_pool = medium_importance
|
|
||||||
else:
|
|
||||||
seed_pool = low_importance if low_importance else list(range(len(processed_sentences)))
|
|
||||||
|
|
||||||
if not seed_pool:
|
|
||||||
break
|
|
||||||
|
|
||||||
# 随机选择种子(在同一重要性层级内)
|
|
||||||
seed_global_idx = random.choice(seed_pool)
|
|
||||||
seed_sentence = processed_sentences[seed_global_idx]
|
|
||||||
|
|
||||||
# 从所有池中移除种子
|
|
||||||
for pool in [high_importance, medium_importance, low_importance]:
|
|
||||||
if seed_global_idx in pool:
|
|
||||||
pool.remove(seed_global_idx)
|
|
||||||
|
|
||||||
current_cluster_indices = [seed_global_idx]
|
|
||||||
current_tokens = seed_sentence['token_length']
|
|
||||||
|
|
||||||
if current_tokens < max_tokens:
|
|
||||||
# 快速选择:只从附近的句子中随机选择
|
|
||||||
all_remaining = high_importance + medium_importance + low_importance
|
|
||||||
if all_remaining:
|
|
||||||
# 随机采样候选句子(而不是计算所有相似度)
|
|
||||||
sample_size = min(2000, len(all_remaining))
|
|
||||||
candidates = random.sample(all_remaining, sample_size)
|
|
||||||
|
|
||||||
# 简单按token长度和重要性选择
|
|
||||||
for candidate_idx in candidates:
|
|
||||||
candidate = processed_sentences[candidate_idx]
|
|
||||||
candidate_tokens = candidate['token_length']
|
|
||||||
|
|
||||||
if current_tokens + candidate_tokens + 1 <= max_tokens:
|
|
||||||
current_cluster_indices.append(candidate_idx)
|
|
||||||
current_tokens += candidate_tokens + 1
|
|
||||||
|
|
||||||
# 从池中移除
|
|
||||||
for pool in [high_importance, medium_importance, low_importance]:
|
|
||||||
if candidate_idx in pool:
|
|
||||||
pool.remove(candidate_idx)
|
|
||||||
break
|
|
||||||
|
|
||||||
if current_tokens >= min_tokens:
|
|
||||||
break
|
|
||||||
|
|
||||||
# 生成聚类文本
|
|
||||||
cluster_sentences = [processed_sentences[idx]['sentence'] for idx in current_cluster_indices]
|
|
||||||
cluster_text = '\n '.join(cluster_sentences)
|
|
||||||
|
|
||||||
# 转换为tokens
|
|
||||||
cluster_tokens = tokenizer.encode(cluster_text, add_special_tokens=False)
|
|
||||||
if len(cluster_tokens) > knowledge_length:
|
|
||||||
cluster_tokens = cluster_tokens[:knowledge_length]
|
|
||||||
else:
|
|
||||||
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
|
|
||||||
cluster_tokens.extend([pad_token_id] * (knowledge_length - len(cluster_tokens)))
|
|
||||||
|
|
||||||
clustered_rows.append(cluster_tokens)
|
|
||||||
|
|
||||||
if (cluster_idx + 1) % 1000 == 0:
|
|
||||||
total_remaining = len(high_importance) + len(medium_importance) + len(low_importance)
|
|
||||||
Logger(f"Fast clustering: {cluster_idx + 1}/{knowledge_num} clusters, {total_remaining} sentences remaining")
|
|
||||||
|
|
||||||
else:
|
|
||||||
# 原始优化算法(适用于中等规模数据集)
|
|
||||||
# 优化2: 批量处理和更高效的数据结构
|
|
||||||
for cluster_idx in tqdm(range(knowledge_num)):
|
|
||||||
if not remaining_indices:
|
|
||||||
Logger(f"No more sentences available. Created {cluster_idx} clusters.")
|
|
||||||
break
|
|
||||||
|
|
||||||
# 2.1 选择importance_score最高的句子作为种子
|
|
||||||
remaining_sentences_subset = [processed_sentences[i] for i in remaining_indices]
|
|
||||||
seed_idx_in_subset = max(range(len(remaining_sentences_subset)),
|
|
||||||
key=lambda i: remaining_sentences_subset[i]['importance_score'])
|
|
||||||
seed_global_idx = remaining_indices[seed_idx_in_subset]
|
|
||||||
seed_sentence = processed_sentences[seed_global_idx]
|
|
||||||
|
|
||||||
# 从剩余索引中移除种子
|
|
||||||
remaining_indices.remove(seed_global_idx)
|
|
||||||
|
|
||||||
# 当前聚类
|
|
||||||
current_cluster_indices = [seed_global_idx]
|
|
||||||
current_tokens = seed_sentence['token_length']
|
|
||||||
|
|
||||||
if current_tokens >= max_tokens:
|
|
||||||
# 如果种子句子已经超过最大token数,直接作为一个聚类
|
|
||||||
cluster_text = seed_sentence['sentence']
|
|
||||||
else:
|
|
||||||
# 2.2 优化的相似度计算和选择
|
|
||||||
if remaining_indices:
|
|
||||||
if similarity_matrix is not None:
|
|
||||||
# 使用预计算的相似度矩阵
|
|
||||||
similarities = similarity_matrix[seed_global_idx][remaining_indices]
|
|
||||||
else:
|
|
||||||
# 动态计算相似度(批量)
|
|
||||||
seed_embedding = embeddings_matrix[seed_global_idx:seed_global_idx+1]
|
|
||||||
remaining_embeddings = embeddings_matrix[remaining_indices]
|
|
||||||
similarities = cosine_similarity(seed_embedding, remaining_embeddings)[0]
|
|
||||||
|
|
||||||
# 创建(相似度, 原始索引, 在remaining_indices中的位置)的元组列表
|
|
||||||
similarity_tuples = [(similarities[i], remaining_indices[i], i)
|
|
||||||
for i in range(len(remaining_indices))]
|
|
||||||
|
|
||||||
# 按相似度排序(降序)
|
|
||||||
similarity_tuples.sort(key=lambda x: x[0], reverse=True)
|
|
||||||
|
|
||||||
# 优化3: 贪心选择,但限制搜索范围以提高速度
|
|
||||||
max_candidates = min(len(similarity_tuples), 500) # 只考虑前500个最相似的句子
|
|
||||||
|
|
||||||
selected_indices_in_remaining = []
|
|
||||||
for sim_score, global_idx, pos_in_remaining in similarity_tuples[:max_candidates]:
|
|
||||||
candidate = processed_sentences[global_idx]
|
|
||||||
candidate_tokens = candidate['token_length']
|
|
||||||
|
|
||||||
if current_tokens + candidate_tokens + 1 <= max_tokens: # +1 for newline
|
|
||||||
current_cluster_indices.append(global_idx)
|
|
||||||
selected_indices_in_remaining.append(pos_in_remaining)
|
|
||||||
current_tokens += candidate_tokens + 1
|
|
||||||
|
|
||||||
if current_tokens >= min_tokens:
|
|
||||||
break
|
|
||||||
|
|
||||||
# 批量移除选中的句子(从后往前移除以避免索引问题)
|
|
||||||
for pos in sorted(selected_indices_in_remaining, reverse=True):
|
|
||||||
remaining_indices.pop(pos)
|
|
||||||
|
|
||||||
# 拼接句子
|
|
||||||
cluster_sentences = [processed_sentences[idx]['sentence'] for idx in current_cluster_indices]
|
|
||||||
cluster_text = '\n'.join(cluster_sentences)
|
|
||||||
|
|
||||||
# 将聚类文本转换为token
|
|
||||||
cluster_tokens = tokenizer.encode(cluster_text, add_special_tokens=False)
|
|
||||||
|
|
||||||
# 截断或填充到knowledge_length
|
|
||||||
if len(cluster_tokens) > knowledge_length:
|
|
||||||
cluster_tokens = cluster_tokens[:knowledge_length]
|
|
||||||
else:
|
|
||||||
# 用pad_token_id填充
|
|
||||||
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
|
|
||||||
cluster_tokens.extend([pad_token_id] * (knowledge_length - len(cluster_tokens)))
|
|
||||||
|
|
||||||
clustered_rows.append(cluster_tokens)
|
|
||||||
|
|
||||||
# 优化4: 减少日志频率
|
|
||||||
if (cluster_idx + 1) % 500 == 0:
|
|
||||||
Logger(f"Created {cluster_idx + 1}/{knowledge_num} clusters, {len(remaining_indices)} sentences remaining")
|
|
||||||
|
|
||||||
# 如果聚类数量不足,用随机token填充
|
|
||||||
while len(clustered_rows) < knowledge_num:
|
|
||||||
pad_token_id = tokenizer.pad_token_id if tokenizer.pad_token_id is not None else 0
|
|
||||||
random_tokens = [pad_token_id] * knowledge_length
|
|
||||||
clustered_rows.append(random_tokens)
|
|
||||||
|
|
||||||
# 转换为tensor
|
# 转换为tensor
|
||||||
clustered_tensor = torch.tensor(clustered_rows, dtype=torch.long)
|
processed_tensor = torch.tensor(processed_rows, dtype=torch.long)
|
||||||
|
|
||||||
Logger(f"Clustering completed:")
|
Logger(f"Data processing completed:")
|
||||||
Logger(f" - Created {len(clustered_rows)} clusters")
|
Logger(f" - Processed {num_to_process} sentences")
|
||||||
Logger(f" - Cluster shape: {clustered_tensor.shape}")
|
Logger(f" - Added {knowledge_num - num_to_process} empty entries")
|
||||||
|
Logger(f" - Final shape: {processed_tensor.shape}")
|
||||||
Logger(f" - Expected shape: ({knowledge_num}, {knowledge_length})")
|
Logger(f" - Expected shape: ({knowledge_num}, {knowledge_length})")
|
||||||
|
|
||||||
# 保存聚类结果到缓存文件
|
# 保存处理结果到缓存文件
|
||||||
try:
|
try:
|
||||||
torch.save(clustered_tensor, args.cluster_cache_path)
|
torch.save(processed_tensor, args.cluster_cache_path)
|
||||||
Logger(f"Cluster results saved to {args.cluster_cache_path}")
|
Logger(f"Processed results saved to {args.cluster_cache_path}")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
Logger(f"Failed to save cluster results: {e}")
|
Logger(f"Failed to save processed results: {e}")
|
||||||
|
|
||||||
# 3. 初始化模型的weight_down_embed
|
# 4. 初始化模型的knowledge_dataset
|
||||||
if hasattr(model, 'extract_db') and hasattr(model.extract_db, 'weight_down_embed'):
|
if hasattr(model, 'knowledge_dataset') and hasattr(model.knowledge_dataset, 'knowledge_dataset'):
|
||||||
model.extract_db.weight_down_embed.data.copy_(clustered_tensor)
|
model.knowledge_dataset.knowledge_dataset.data.copy_(processed_tensor)
|
||||||
Logger("Successfully initialized model.extract_db.weight_down_embed with clustered data")
|
Logger("Successfully initialized model.knowledge_dataset.knowledge_dataset with processed data")
|
||||||
else:
|
else:
|
||||||
Logger("Warning: Could not find model.extract_db.weight_down_embed to initialize")
|
Logger("Warning: Could not find model.knowledge_dataset.knowledge_dataset to initialize")
|
||||||
# 存储为全局变量作为备选
|
# 存储为全局变量作为备选
|
||||||
globals()['clustered_database'] = clustered_tensor
|
globals()['processed_database'] = processed_tensor
|
||||||
|
|
||||||
Logger(f"Database embeddings and sentences stored in model")
|
Logger(f"Database embeddings and sentences stored in model")
|
||||||
|
|
||||||
@ -453,6 +224,7 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
|
|||||||
total_steps_in_epoch = len(train_loader)
|
total_steps_in_epoch = len(train_loader)
|
||||||
total_training_steps = args.epochs * total_steps_in_epoch
|
total_training_steps = args.epochs * total_steps_in_epoch
|
||||||
moe_path = '_moe' if args.use_moe else ''
|
moe_path = '_moe' if args.use_moe else ''
|
||||||
|
best_loss = float('10000')
|
||||||
|
|
||||||
# 添加CUDA事件来分析性能 (只在主进程进行)
|
# 添加CUDA事件来分析性能 (只在主进程进行)
|
||||||
if args.profile and accelerator.is_main_process:
|
if args.profile and accelerator.is_main_process:
|
||||||
@ -516,7 +288,12 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
|
|||||||
|
|
||||||
# 前向传播
|
# 前向传播
|
||||||
with ctx:
|
with ctx:
|
||||||
res = model(X)
|
if step == 0 and args.embedding_epoch == epoch:
|
||||||
|
# 需要设置原始模型的freeze_embedding属性,而不是包装后的模型
|
||||||
|
unwrapped_model = accelerator.unwrap_model(model)
|
||||||
|
unwrapped_model.freeze_embedding = True
|
||||||
|
Logger(f"Set freeze_embedding=True for epoch {epoch}, step {step}", accelerator)
|
||||||
|
res = model(X, step=step)
|
||||||
loss = loss_fct(
|
loss = loss_fct(
|
||||||
res.logits.view(-1, res.logits.size(-1)),
|
res.logits.view(-1, res.logits.size(-1)),
|
||||||
Y.view(-1)
|
Y.view(-1)
|
||||||
@ -640,7 +417,9 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
|
|||||||
wandb.log(log_dict)
|
wandb.log(log_dict)
|
||||||
|
|
||||||
# 保存模型 (只在主进程进行)
|
# 保存模型 (只在主进程进行)
|
||||||
if (step + 1) % args.save_interval == 0 and accelerator.is_main_process:
|
loss_total = loss.item() * args.accumulation_steps
|
||||||
|
if best_loss > loss_total and accelerator.is_main_process:
|
||||||
|
best_loss = loss_total
|
||||||
# 使用函数开始处定义的moe_path变量
|
# 使用函数开始处定义的moe_path变量
|
||||||
ckp = f'{args.save_dir}/pretrain_{args.dim}{moe_path}.pth'
|
ckp = f'{args.save_dir}/pretrain_{args.dim}{moe_path}.pth'
|
||||||
|
|
||||||
@ -659,21 +438,22 @@ def train_epoch(epoch, accelerator, model, train_loader, optimizer, scheduler, a
|
|||||||
def main():
|
def main():
|
||||||
parser = argparse.ArgumentParser(description="MiniMind Pretraining with Accelerate")
|
parser = argparse.ArgumentParser(description="MiniMind Pretraining with Accelerate")
|
||||||
parser.add_argument("--out_dir", type=str, default="out")
|
parser.add_argument("--out_dir", type=str, default="out")
|
||||||
parser.add_argument("--epochs", type=int, default=3)
|
parser.add_argument("--epochs", type=int, default=4)
|
||||||
parser.add_argument("--batch_size", type=int, default=24)
|
parser.add_argument("--embedding_epoch", type=int, default=2, help="embedding训练的epoch数")
|
||||||
|
parser.add_argument("--batch_size", type=int, default=64)
|
||||||
parser.add_argument("--learning_rate", type=float, default=2e-4)
|
parser.add_argument("--learning_rate", type=float, default=2e-4)
|
||||||
parser.add_argument("--dtype", type=str, default="bfloat16")
|
parser.add_argument("--dtype", type=str, default="bfloat16")
|
||||||
parser.add_argument("--use_wandb", default=True, action="store_true")
|
parser.add_argument("--use_wandb", default=True, action="store_true")
|
||||||
parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain")
|
parser.add_argument("--wandb_project", type=str, default="MiniMind-Pretrain")
|
||||||
parser.add_argument("--num_workers", type=int, default=48)
|
parser.add_argument("--num_workers", type=int, default=8)
|
||||||
parser.add_argument("--accumulation_steps", type=int, default=32)
|
parser.add_argument("--accumulation_steps", type=int, default=32)
|
||||||
parser.add_argument("--grad_clip", type=float, default=1.0)
|
parser.add_argument("--grad_clip", type=float, default=1.0)
|
||||||
parser.add_argument("--warmup_iters", type=int, default=0)
|
parser.add_argument("--warmup_iters", type=int, default=0)
|
||||||
parser.add_argument("--log_interval", type=int, default=100)
|
parser.add_argument("--log_interval", type=int, default=100)
|
||||||
parser.add_argument("--save_interval", type=int, default=10000)
|
parser.add_argument("--save_interval", type=int, default=10000)
|
||||||
parser.add_argument('--dim', default=1024, type=int)
|
parser.add_argument('--dim', default=512, type=int)
|
||||||
parser.add_argument('--n_layers', default=32, type=int)
|
parser.add_argument('--n_layers', default=8, type=int)
|
||||||
parser.add_argument('--max_seq_len', default=1024, type=int)
|
parser.add_argument('--max_seq_len', default=512, type=int)
|
||||||
parser.add_argument('--use_moe', default=False, type=bool)
|
parser.add_argument('--use_moe', default=False, type=bool)
|
||||||
parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能,使用固定值1e-4替代")
|
parser.add_argument('--disable_db', action='store_true', help="禁用数据库功能,使用固定值1e-4替代")
|
||||||
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl")
|
parser.add_argument("--data_path", type=str, default="./dataset/pretrain_hq.jsonl")
|
||||||
@ -681,11 +461,11 @@ def main():
|
|||||||
parser.add_argument("--profile", action="store_true", default=True, help="启用性能分析")
|
parser.add_argument("--profile", action="store_true", default=True, help="启用性能分析")
|
||||||
parser.add_argument("--profile_interval", type=int, default=10, help="性能分析打印间隔(步数)")
|
parser.add_argument("--profile_interval", type=int, default=10, help="性能分析打印间隔(步数)")
|
||||||
parser.add_argument("--use_flash_attn", action="store_true", default=True, help="启用FlashAttention")
|
parser.add_argument("--use_flash_attn", action="store_true", default=True, help="启用FlashAttention")
|
||||||
parser.add_argument("--knowledge_num", type=int, default=65536,help="知识库的数据数目")
|
parser.add_argument("--knowledge_num", type=int, default=8192,help="知识库的数据数目")
|
||||||
parser.add_argument("--knowledge_length", type=int, default=64,help="知识库的句子长度")
|
parser.add_argument("--knowledge_length", type=int, default=32,help="知识库的句子长度")
|
||||||
parser.add_argument("--database_init_path", type=str, default="./dataset/database_init.json", help="数据库初始化路径")
|
parser.add_argument("--database_init_path", type=str, default="./dataset/database_init.json", help="数据库初始化路径")
|
||||||
parser.add_argument("--fast_clustering", action="store_true", default=True, help="使用快速近似聚类算法(适用于大数据集)")
|
parser.add_argument("--fast_clustering", action="store_true", default=True, help="使用快速近似聚类算法(适用于大数据集)")
|
||||||
parser.add_argument("--cluster_cache_path", type=str, default="./cache/cluster_tokens.pt", help="聚类结果缓存文件路径")
|
parser.add_argument("--cluster_cache_path", type=str, default="./cache/cluster_tokens_single.pt", help="聚类结果缓存文件路径")
|
||||||
parser.add_argument("--recompute_clusters", action="store_true", default=False, help="强制重新计算聚类,忽略缓存文件")
|
parser.add_argument("--recompute_clusters", action="store_true", default=False, help="强制重新计算聚类,忽略缓存文件")
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
@ -724,7 +504,8 @@ def main():
|
|||||||
disable_db=args.disable_db,
|
disable_db=args.disable_db,
|
||||||
flash_attn=args.use_flash_attn,
|
flash_attn=args.use_flash_attn,
|
||||||
knowledge_num=args.knowledge_num,
|
knowledge_num=args.knowledge_num,
|
||||||
knowledge_length=args.knowledge_length
|
knowledge_length=args.knowledge_length,
|
||||||
|
embeddings_epoch=args.embedding_epoch
|
||||||
)
|
)
|
||||||
|
|
||||||
#########################################################
|
#########################################################
|
||||||
|
Loading…
x
Reference in New Issue
Block a user